
Scan&Paint: Image-based Projection Painting

Vanessa Klein* Markus Leuschner Tobias Langen Philipp Kurth Marc Stamminger Frank Bauer†

Friedrich-Alexander University Erlangen-Nürnberg (FAU), Visual Computing

Figure 1. Our pop-up system iteratively scans white target objects and continuously fuses the reconstructed depths in screen space
for novel synthetic views by applying the FragmentFusion algorithm. The user’s digital paint is incorporated into the original scan
views and included in the fusion process. The projector projects the color onto the tracked real-world object and luminance-adjusts
the color to the estimated surface geometry.

ABSTRACT

We present a pop-up projection painting system that projects onto an
unknown three-dimensional surface, while the user creates the pro-
jection content on the fly. The digital paint is projected immediately
and follows the object if it is moved. If unexplored surface areas
are thereby exposed, an automated trigger system issues new depth
recordings that expand and refine the surface estimate. By intertwin-
ing scanning and projection painting we scan the exposed surface at
the appropriate time and only if needed. Like image-based render-
ing, multiple automatically recorded depth maps are fused in screen
space to synthesize novel views of the object, making projection
poses independent from the scan positions. Since the user’s digital
paint is also stored in images, we eliminate the need to reconstruct
and parametrize a single full mesh, which makes geometry and color
updates simple and fast.

Index Terms: Computing methodologies—Mixed / augmented
reality; Computing methodologies—Image-based rendering; Com-
puting methodologies—Reconstruction

1 INTRODUCTION

This is the accepted version of the following article: V. Klein, M. Leuschner, T. Langen, P. Kurth, M. Stamminger and F. Bauer, ”Scan&Paint: Image-based Pro-

jection Painting,” 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2021, pp. 517-525, doi: 10.1109/ISMAR52148.2021.00069.

©2021 IEEE

Rapid prototyping is essential in collaborative shared environ-
ments to save time and costs. In this regard, dynamic projection
mapping offers real-world and haptic interactions by projecting
user-generated content on a target object. For example, instead
of ordering several different prototypes of manufactured products,
e.g., shoes, projection mapping enables designers to visualize and
discuss different colors and materials on a single manufactured
prototype. However, while it is easy to set up spatial augmented
reality (SAR) for simple (e.g., planar) or at least static target objects,
projection mapping for rigid, but movable and arbitrarily shaped,

*e-mail: vanessa.klein@fau.de
†e-mail: frank.bauer@fau.de

three-dimensional objects currently requires more involved prepara-
tions. A pixel-correct 3D model of the target object and calibrated
object tracking are required to correctly compensate for varying
irradiance at uneven surfaces and to avoid artifacts along inner sil-
houettes. Additionally, painting or texturing the objects needs further
pre-processing like generating suitable UV maps [10].

Knowing the target surface, scanning and preparing it in advance
is, at best, a tedious and time-consuming preliminary work that
demands trained users. It is also tempting to save preparation time
by reconstructing only the distinct parts of the surface that are pre-
sumably needed for projection – only to later discover that a new
spontaneous idea would require more reconstructed surface. With
current systems it is thus not feasible to start unscheduled projection
mapping sessions with unknown objects, for example, designers
meeting spontaneously to quickly discuss new design ideas on a
just delivered prototype. It also prohibits mobile setups, with which
objects and surfaces can be annotated on the spot.

Instead of having a projection mapping system require a high-
quality full scan, the system itself should decide when and which
parts of the surface require reconstruction to be fully flexible for any
kind of user application. We therefore design a pop-up projection
mapping system that does not rely on prepared scans, but serves
as an automatic on-demand 3D scanner. This enables us to itera-
tively scan a movable object and paint onto it during runtime. Our
method follows the zeitgeist of other more traditional Augmented
Reality approaches where users prefer to augment the virtual world
immediately, without a lengthy preparation phase at the beginning.

Instead of reconstructing a single complete model from the
recorded scans, we leverage depth and color fusion – similar to
image-based rendering – to compose the projection content. The
only remaining requirement is a geometrically calibrated projection
mapping system (a projector and a tracking/scanning device), most
conveniently realized by installing the components on a tripod or
any other rigid mounting system.

We summarize our contributions as follows:

• The first of its kind fully functioning system that allows im-
mediate, geometry-aware projection painting on an unknown,
complex and movable rigid target object with consumer-grade
hardware

https://doi.org/10.1109/ISMAR52148.2021.00069


• A paradigm shift that proposes image-based instead of mesh-
based projection mapping

• A trigger mechanism that automatically issues discrete scene
captures, if the current surface estimate does not suffice

• A novel backward-oriented application of the Fragment-
Fusion algorithm [19] to store color data for 3D surfaces

2 RELATED WORK

Projection mapping renders a digital scene and projects it onto a
real-world surface. In contrast to, e.g., a planar wall, projecting onto
arbitrarily shaped objects requires knowledge about this shape to
counterbalance real-world shading effects and was first performed
by Raskar et al. [17]. Later, Siegl et al. introduced geometry-
aware projection mapping in screen space for multiple projectors
and movable, known target objects [22]. Dynamic setups track their
known objects with the help of markers [1] [14] [25] [24], by fitting
their models into depth camera frames [22] [11] [28], by performing
feature matching for feature-rich textures [18] or are optimized
towards the object, e.g., face tracking [3]. The MIDAS-projection
system by Miyashita et al. [12] projects onto unknown and even
deformable surfaces like clay or fluids. In addition to uniform colors
or materials, tileable textures with spatio-temporal consistency are
projected while the target surface is trackable via optical flow. In
contrast to their work, our system cannot handle deformable surfaces
but performs persistent texturing, i.e., textures remain at the correct
location after re-entering the projector frustum. Our incremental
surface estimate also enables multi-view screen-space techniques
like shadow mapping. Recent advances in the field are summarized
by Grundhöfer et al. [4]. Projection painting, i.e., providing a user
with means to color the projection during runtime, is demonstrated
by Raskar et al. [2] and Lange et al. [10] [9], but requires a full,
parametrized mesh. MadMapper and Lightform are, amongst others,
tools available to the general public that combine visible structured
light scanning, projection mapping and content design. However,
they do not support real-time tracking and are thus limited to a single
point of view and static objects.

Geometry-aware projection mapping requires high-quality sur-
face data. 3D scanning, i.e., retrieving digital color and shape data
from real-world objects, is a well studied, but at the same time up-
to-date research topic. The best scanning method depends on the
application itself and its precision requirements. Structured light
scans represent a compromise between speed and quality, while at
the same time requiring only consumer-grade hardware. Predefined
patterns are projected onto the target object and are then recorded
by a camera. Leveraging the knowledge about the patterns, the
depth is reconstructed from the images. Gray code scanning pro-
vides good-quality results, but the number of pattern images depends
on the projector’s spatial resolution, which increases the total scan
duration. Phase shifting algorithms [23], on the other hand, decou-
ple the patterns from the projector resolution and are often faster.
Zhang gives a detailed overview on structured light methods [27].
Chebyshev Phase Shifting by Moreno et al. [13] is a fast technique
that requires nine patterns (three if color-encoded) and provides
high-quality scans.

A single structured light scan is usually made from a fixed view di-
rection. Thus, multiple scans from different perspectives are needed
to scan an entire three-dimensional object. Due to small errors in
each scan, a single dense reconstruction from multiple scans is no
trivial task. Volumetric methods like KinectFusion [15] [5] fuse ge-
ometry into global structures, but generally exhibit a large memory
footprint. Zollhöfer et al. [29] give a comprehensive summary of re-
cent techniques in 3D reconstruction. FragmentFusion by Rückert et
al. [19] does not attempt to reconstruct a global model, but fuses ge-
ometry (and color) in screen space by computing a weighted average

Figure 2. Projection mapping setup. RGB-D camera and projector
face an arbitrary (white Lambertian) target object.

Figure 3. Overview. Scans from various perspectives are fused for
new synthetic views (e.g., projection image). Paint drawn into the
paint texture is backpropagated to the original scans (virtual camera
images) and from then on included in the fusion process.

of fragments lying on the same surface. This approach reminds of
image-based rendering techniques, summarized by Shum et al. [21].

We combine structured light scanning, fusion-based rendering and
dynamic, geometry-aware multi-projection mapping to project onto
unknown, complex and movable surfaces (see Fig. 1). In contrast
to former projection mapping scanner systems [26] [16] [7] [6],
our system is not based on a single, fully reconstructed mesh, but
it scans the moving surface repeatedly during runtime and fuses
continuously in screen space.

3 SYSTEM OVERVIEW

Our projection mapping setup consists of an RGB-D camera and a
projector (see Fig. 2). The target object is tracked via the depth chan-
nel and scanned by observing projected structured light patterns via
the color channels. We calibrate camera and projector intrinsically
and extrinsically [8].

Our system operates in an iterative manner: scan, paint, move,
(scan,) paint, move, (scan,) paint, and so forth. On start-up, a first
structured light scan of the target object is performed automatically
(see Sect. 4). The reconstructed depth is shown to the user on an
external display where they are also given the tools to digitally paint
it. By rendering the scene from the projector’s point of view, this
first scan view is already suitable for projection mapping. However,
a single structured light scan covers only the surface that is visible to
both camera and projector. By moving the object, new parts of the
surface are exposed to the camera-projector pair, triggering a new
scan if necessary. The new reconstructed depth map yields a new
perspective of the target object. Since we track the object via the
camera’s depth channel, the position of the previously recorded scan
is known to the system and the depth maps are aligned to each other.

This iterative process is only realizable with a system design that
allows to incrementally add newly scanned geometry. Furthermore,
the system must be able to generate a continuously growing texture



with appropriate resolution. Thus, instead of trying to generate a
single mesh from all the depth maps, which is no trivial task and
usually includes manual work for good quality, we fuse the scans in
screen space. Since the object is movable, the projector’s view of the
object hardly ever matches the original scan perspective. Therefore,
in every frame, a new synthetic view is generated by rendering each
scan from the projector’s current perspective and fusing overlapping
fragments to estimate the real depth (see Sect. 5). Similarly, the
paint interface shows a per-frame fused view of the scanned object
that the user can inspect freely by moving the virtual camera.

The color input from the user is added by painting the fused
view (see Sect. 6). The paint is reprojected into the existing scan
views, which from then on include not only depth, but also color
information. Hence, the fusion process fuses not only the scans’
depth maps but also their colors. One can think of this procedure
this way: By retroactively incorporating color into the scans, we
play act as if this color had been scanned too. Thus, when projecting,
we simply add colors that should have been there already. Fig. 3
visualizes the algorithm.

4 SCANNING

Since we assume no prior knowledge about the target surface, the
system starts with a scan to estimate the surface depth and normals.
A suitable 3D scanning method for our interactive system must meet
the following requirements:

1. Quality: Geometry-aware (multi-)projection mapping requires
high-quality surface data to accurately compute per-pixel lu-
minance. Otherwise, errors manifest themselves as lighting
artifacts to which the human eye is sensitive.

2. Speed: For complex target objects we must assume that many
scans are necessary to capture the surface entirely. Therefore,
the scanning method must be reasonably fast to avoid long
waiting periods for the user.

The depth stream from the RGB-D camera yields fast geometry
estimates, however the images are very noisy and do not satisfy the
quality requirement. Structured light scans, on the other hand, pro-
vide sufficient quality and our setup already provides the necessary
projector and RGB camera.

4.1 Reconstruction

We employ grayscale Chebyshev Phase Shifting [13] with ten images.
The first image is a white image and used to help filter foreground
from background. Only pixels that exceed a certain brightness thresh-
old are considered foreground and reconstructed. The remaining
nine images encompass three phase shifts of three pattern frequen-
cies each. In contrast to a Gray code scan for example, the number
of images is constant and does not depend on the projector’s reso-
lution. The ten images are projected, one after another, and each
projection is recorded by the camera. Unwrapping the phase from
the camera recordings yields correspondences between projector
frame columns and camera pixels. Since camera and projector are
calibrated, three-dimensional points are created from these corre-
spondences by computing plane-ray intersections. These 3D values
are saved as an extended depth map from the camera’s perspective.
We additionally fill small holes in the scan for a more robust result.

Chebyshev Phase Shifting generates good-quality scans, however
– like all structured light scans – not consistently across the entire
surface. The quality decreases, the further the surface faces away
from the camera. We introduce two thresholds th and tl to handle
such cases. If the angle between surface normal and camera direction
exceeds th, we discard the depth value for being untrustworthy.
Otherwise, if the angle still exceeds the lower threshold tl , we keep
the depth value, but mark it as unreliable. Reliability is stored as
a value between 0 and 1, linearly interpolating between th and tl .

P¡

P¤

X

P£ P¢

P¨ Target Object

¡

¦

¥§

¨ ¤

£ ¢

¤¥°

¤¥°

¤¥°¤¥°

¤¥° ¢¢°

Figure 4. For a rotation trigger of 45° the angle between the current
camera view and the closest existing scan view must exceed 45° to
trigger a new scan.

Filled holes receive a reliability of 0. Unreliable areas trigger new
scans (see Sect. 4.2.3) and are treated specially when fusing them
(see Sect. 5).

4.2 Scan Trigger

A single structured light scan does not cover the entire surface of a
three-dimensional target object. If the object is moved, e.g. rotated,
the projection mapping system is quickly faced with new surface
areas to which no scan data is available. Therefore, it is necessary to
issue another scan from this new perspective.

Triggering a new scan should not be the responsibility of the user.
If so, when moving the real-world object, the user would need to
keep in mind, how much of the target was already scanned (and
the corresponding quality) and stop the movement precisely there,
where a new scan is necessary. The more the depth camera loses
sight of previously scanned areas, the less reference points are left
to determine the scans’ matching rotation and translation. Failing to
know the correct moment when to stop moving would thus lose the
object’s tracking. Furthermore, re-scanning already captured areas
should also be prevented. Triggering a new scan must therefore be
an automated process to be viable.

A trigger should not fire too early, to prevent too many interrupt-
ing structured light scans that provide only little new knowledge
about the surface. However, waiting too long limits the surface that
is available for projection mapping and risks losing the tracking.

We define object rotation and translation as the two main ways of
exposing new surface to the system. We therefore propose both a
rotation and a translation scan trigger. An additional quality trigger
ensures sufficient overall quality.

4.2.1 Rotation Trigger

Each already existing scan is tracked based on the depth stream of
the camera. Once the existing scans have rotated too far, a new
scan is triggered. We therefor determine, in every frame, the angle
between the camera and the tracked scans. The scan exhibiting the
smallest angle is defined as the rotation-wise closest scan. Once this
angle exceeds a pre-defined threshold, we assume that the camera’s
current view of the object is ideal for a new structured light scan,
since even the closest scan is turned too far away for the current
perspective. Fig. 4 depicts an example with a rotation threshold of
45°. After the first automatic scan from scan view P1, the object is
rotated. A second scan is triggered at P2, since the angle between the
camera and P1 exceeds the threshold of 45°. Rotating in the other
direction, it takes a total of 90° (45°+45°), until the angle between
the new position P3 and the closest existing scan view (P1) exceeds
45° again. The gray perspective X does not trigger a scan, since the
threshold is not reached; P1 is too close.



(a) (b) (c) (d)

Figure 5. (a, b): Different relative surface gain between two consecu-
tive scans (blue, green), triggered by translating the object to the right
from different start positions. (c, d): Applying the same threshold ratio
of 1.5, a larger scan and thus capture area allows more translation of
the object before a new scan is triggered.

4.2.2 Translation Trigger

If the target object is bigger than the camera’s view frustum, rota-
tion alone cannot expose the entire surface. Therefore, a translation
trigger observes the object’s translation with respect to the camera.
Since translation measurements change significantly with the scene’s
scale, we apply a relative 2D measure by projecting the scans’ cen-
ters of gravity (COG) into the camera frame. Similar to the rotation
trigger we find the translation-wise closest scan, i.e., the scan that
was translated the least from its original scan position. If even this
closest distance, measured in camera pixels, exceeds a threshold,
we once again assume that the camera’s current view is ideal for
a new structured light scan. However, in contrast to the rotation
trigger, this threshold is not a constant, since the dimensions and
placement of the object should influence the trigger’s sensitivity.
For example, in Fig. 5 the target object is translated to the right
by the same amount in (a) and (b), triggering two scans (blue and
green). Since, at the beginning, the object is located farther outside
of the camera’s view frustum in (b) than in (a), the first scan is
smaller. In relative terms, the second scan thus provides a larger
surface gain in (b). Considered the other way round, the translation
trigger should trigger earlier in (b) than in (a) to keep the relative
gain approximately equal.

To add a relative surface measure, we define the capture area to be
the box centered around a scan’s COG and stretching to the camera
frame’s closest vertical and horizontal border (see Fig. 5 (c) and (d)).
The translation trigger then issues a new structured-light scan, if
the closest scan’s translation distance (component-wise) exceeds a
threshold-defined ratio of the capture area’s size. The capture area
equals a scan’s bounding box, if the object lies partially outside the
camera frustum. If it lies completely inside, the capture area covers
a larger area than the bounding box, since it includes the distance to
the camera frame borders. That way, a small object centered in the
frame does not trigger new scans too easily if translated only a little.

4.2.3 Quality Trigger

The quality of a structured light scan depends on the target surface
and the angle from which it is scanned. If either camera or projector
observe/project onto the surface from a too shallow angle, the scan’s
quality is diminished. Self-shadows even prevent parts of the surface
from being scanned entirely. In Fig. 6a, three scans are issued
from three different perspectives P1−3, each 45° apart. Although a
rotation trigger of 45° is ideal for the rest of the surface, the notch
is reconstructed poorly. Thus, we implement a quality trigger that
issues a new scan if poor quality is detected.

Since we base our projection not on a single mesh, but the image-
based fusion of multiple scans, the quality similarly has to be deter-
mined by assessing the fused result. Therefore, in every frame, we

P¡

P¢

P£
P¤

(a) (b)

Figure 6. (a) The scan quality decreases if the surface normal points
too far away (yellow) from the scanning poses (P1−3) or if affected
by self-shadows (red). An additional scan (P4) is required to improve
quality. (b) Fused view of two scans, taken 30° apart, depicting many
unreliable areas (red).

render (see Sect. 5) the scene from the camera’s perspective. With
FragmentFusion [19], each pixel is a weighted average of the frag-
ments projecting onto this pixel. We harness this behavior for quality
assessment and likewise fuse the reliability value of each fragment,
resulting in a confidence map (see Fig. 6b). Based on its confidence
value, each fused pixel is classified as either good-quality (> 0.9) or
bad-quality. If the fused frame’s ratio of bad-quality pixels exceeds
a pre-defined quality threshold, we trigger a new scan.

This quality trigger is based on the assumption that any part
of the surface could be recorded better, if the camera’s angle was
more perpendicular to it. However, there are cases when a new
scan from this presumably ideal perspective does not yield better
geometry information (e.g., due to extreme surface normals from
any perspective). In that case the quality trigger would issue new
scans indefinitely, since the quality check always fails. Therefor we
limit the trigger to fire only if there does not yet exist a scan that was
recorded from approximately the current perspective.

4.3 Movement Detection

Our system expects some kind of interaction with the target object,
e.g., a hand rotating the object, such that projections from another
perspective are possible. As new scans are initiated automatically
(see Sect. 4.2), extra care has to be taken to not include the user
into the scans. Even if no human interacts with the object, e.g.,
if the object is put on a turntable, it must be guaranteed that the
object itself is not in motion when a new scan starts. Therefor we
perform a simple movement detection by analyzing the camera’s
depth image (the color image is affected by the projection). In
contrast to many other common use cases, we are not interested
in the kind of movement, movement direction or other advanced
detection techniques. Instead, it is sufficient to know only if or if not
there is movement – is a new scan possible right now or not?

We assume that motion manifests itself as change in the camera
pixels’ depth values, especially at silhouette borders. The Normal-
ized Cross Correlation (NCC) is a common tool in image processing
for quantifying change between two images A and B:

r =
∑i(ai − ā)(bi − b̄)

p

∑i(ai − ā)2 ∑i(bi − b̄)2
(1)

where ai and bi are the image values of A and B at pixel index i and
ā, b̄ their arithmetic means respectively. By computing the NCC of
two consecutive camera depth frames we measure how similar they
are. If the similarity lies below a threshold tm, we assume movement
in the scene and wait until it stops before starting a new scan. If a
scan had already started, the scan is interrupted and discarded.



The threshold tm depends very much on the noisiness of the depth
image. We compute an optimal threshold automatically by analyzing
the noise level at startup. For the first few frames, we assume that the
scene is motionless. We compute the average NCC µ and standard
deviation σ and compute tm as follows:

tm = µ − k ·σ (2)

where k is a parameter that can be adjusted by the user. In practice,
k = 1 is a good default value. Since the camera’s noise may be
affected by the image content (e.g., the object’s distance to the
camera), the threshold is recomputed periodically if no movement is
detected. To further reduce incorrect movement detection, caused
by sudden spikes in the noise level, we smooth the per-frame NCC
exponentially.

Even if movement detection fails and a scan is issued, although
the scene is still in motion or otherwise disturbed (e.g., if the user’s
hand still touches the target object), there is a last automatic check
to ensure the scan’s overall quality. The pose estimations of the
reconstructed depth maps already roughly align to the real-world
pose. In order to improve the tracking data, we additionally employ
the Point-to-Plane Iterative Closest Point (ICP) algorithm to fine
align the depth maps. If the resulting ICP error is too large, we
assume that the scan failed due to unknown reasons and discard it.

5 RENDERING NEW PERSPECTIVES

In dynamic projection mapping the target object can be moved
around freely and the projection must update accordingly. Therefore,
the projection mapping content must be rendered from the projec-
tor’s perspective and be adjusted to the physical surface properties
(e.g., surface normal). We employ geometry-aware projection map-
ping [11, 22], which requires as input the per-pixel surface normal
and depth as well as the target color. Since our system scans the
target object’s surface automatically, we are provided with many
reconstructed depth maps from various perspectives. Since the pro-
jection mapping algorithm works in screen space, it is not necessary
to reconstruct a single mesh from them, but to only compute the
per-pixel surface normal and depth from the projector’s current per-
spective. The new perspective is already given by tracking the object
and adjusting the scans’ model matrices accordingly. In theory it
would then be enough to render the scans with a simple depth test.
In practice, however, camera noise and small calibration errors add
up to noticeable depth discontinuities where the scans touch.

To overcome this issue, we implement FragmentFusion by
Rückert et al. [19] that replaces the depth test by a fusion process.
Their screen-space algorithm is based on the assumption that frag-
ments with a similar depth describe the same surface. Instead of
having one fragment ‘win’ a depth test over another, fragments are
fused, i.e., form a weighted average. The scans are therefor consec-
utively rendered into the same framebuffer. Each new fragment f
is compared to the current surface estimate p at the same position
in the buffer. A fragment is discarded if it lies in the background or
replaces the current surface estimate if it lies in the foreground. The
decision is based on a per-pixel depth-dependant truncation distance.
Otherwise, the fragment is fused into the surface, thereby updating
the estimate for the surface point:

dp := αdp +(1−α)d f (3)

cp := αcp +(1−α)c f (4)

where dp, d f describe the depth and cp, c f the color of f and p re-
spectively. The factor α determines the influence of a new fragment:

α =
wp

w f +wp
(5)

w f =
cosΘ

dk

(6)

Figure 7. The user’s input interface is a digital replicate of the real-
world setup (see Fig. 2).

where dk describes the fragment’s reconstructed depth and Θ the
angle between its original scan perspective and the rendering camera.
wp, initialized with 0, is updated with each fragment by adding w f .

We extend the authors’ algorithm by additionally interpolating
fragment normals~n{p, f} and reliabilities r{p, f} (see Sect. 4.2.3):

~np := normalize(α~np +(1−α)~n f ) (7)

rp := αrp +(1−α)r f (8)

By incorporating the reliability parameter into the weight computa-
tion we gain direct access to the fusion process:

w f =
cosΘ

dk

· r f (9)

The penalty of unreliable regions is thus increased; artificially filled
holes are even ignored entirely if more reliable data is available from
a second fragment.

The resulting values in the fusion buffer can then be used for addi-
tional deferred rendering, e.g., shading. The final depth, normal and
color values are forwarded to the projection mapping system [11,22],
which adjusts the target color’s luminance to the surface geometry.
The overall confidence result triggers new scans if needed (see
Sect. 4.2.3).

Similarly to computing the projection output as described above,
tracking the object also requires rendering the scans. Depth-based
tracking compares the depth image of the depth camera with a
rendered depth image from the same perspective, usually in form
of the ICP algorithm. Thus, before we render the projection image,
which requires tracking information, we render the scans from the
depth camera’s perspective and update our tracking state.

6 PROJECTION PAINTING

The system described so far scans the target object on demand and
per-frame fuses the scans for new synthetic perspectives that are
then projected onto the target object. There is, however, no way to
introduce content to be projected yet (besides a default shading).
Usually, projection mapping content requires human input, e.g., an
artist’s design that is custom-made for the specific object. Since we
never reconstruct a single mesh from all available scans, user input
follows the same screen-space approach as the rest of the system.

6.1 Paint Texture

We provide the user with a paint interface, that shows the entire 3D
scene as scanned so far. Thus, the scene acts as a digital twin to
the real-world setup (see Fig. 7). Each frame, the scene is rendered
with the FragmentFusion algorithm (see Sect. 5) from the user’s
desired perspective. The user paints the target object by drawing
into a 2D texture that is always located in front of them. One can
roughly think of this paint texture as transparent foil (see Fig.8). For
rendering the active stroke on the object, the deferred shading mixes
each fused fragment’s base color with the paint texture’s color at the
same screen coordinate and applies the desired shading.



Figure 8. The user paints the paint texture. The color is applied
by looking up each fragment’s color in the paint texture at the same
screen coordinate, giving the impression of a painted surface.

6.2 Paint Reprojection

Once the user changes their view frustum, the fragments’ screen
coordinates change and do not match the paint texture anymore, as
they only align at the original paint perspective. In theory, we could
collect all strokes from the exact same perspective into a single paint
texture and remember the perspective. For each new perspective we
would then allocate a new paint texture. During deferred rendering,
we would project each fragment into every former paint frustum
(in chronological order to achieve the correct layered effect) and
sample its paint texture to retrieve the correct color. In practice,
however, creating a new paint texture every time the user changes
their perspective would quickly allocate a huge amount of memory
and the system would run out of memory sooner or later.

We therefore propose thinking the FragmentFusion algorithm
backwards. By reprojecting the paint into the virtual camera images,
that correspond to our scan views, we benefit from the rendering’s
color fusion process. A user can only paint a surface that has already
been scanned. Hence, any fused fragment being painted is derived
from at least one scan. By reprojecting the color into all scans
contributing to this fragment, we ensure that any fused result from
them exhibits the desired color as well. To reproject the color,
we render each scan from its original scan perspective. For each
rendered fragment we determine the paint texture’s corresponding
texture coordinate by projecting the fragment’s world position into
the user’s current paint frustum and sample its color. The rendering
result is stored in each scan view’s virtual camera image. Note that
storing the scans’ colors image-based, similar to the paint texture,
does not require any three-dimensional parametrization, since the
color lookup is not based on vertices’ texture coordinates, but on a
projection into the original scan view frustum.

7 IMPLEMENTATION DETAILS

A structured light scan provides us with discretely sampled 3D points
of the surface. In contrast to an arbitrary point cloud, the points
each originate from a single different camera pixel. Thus, from the
camera’s point of view, these discrete samples appear continuous and
can be stored as a depth map. However, once we observe the depth
map from a different perspective, e.g., when synthesizing a novel
view, we are faced with holes that inevitably erupt when sampling
such a discrete data structure. We therefore interpolate the depth
values by generating a triangle mesh from each scan. The camera
frame local pixel neighborhood yields the required topology. We
currently construct each mesh once on the CPU after a successful
scan. For a more robust result, we fill small holes in the mesh using
an advancing front method (AFM) and improve the overall mesh
quality by decimating the total triangle count and smoothing the
surface. While the resulting speed of our CPU-based approach is
sufficient for our meshes, faster approaches are possible. Since the
entire algorithm operates in screen space and requires depth value
interpolation only during rendering, it would also be possible to add

(a) Without Dilation (b) With Dilation

Figure 9. Close-up of the same paint stroke on the fused surface with
and without prior dilation of the reprojected paint. Small areas (circled
in yellow) remain unpainted when skipping dilation.

(a) (b) (c)

Figure 10. (a) Correctly displayed paint stroke, if the virtual camera
image’s perspective matches the original scan’s perspective. (b) The
image is incorrectly stored from the projector’s point of view. The
different perspectives for geometry and color cause stains that (c)
only from the projector’s point of view (wrongfully) appear to be correct.

the mesh construction as a compute shader preprocessing step.

To prevent painting on the back of the object, we perform a
position check similar to shadow mapping. A virtual camera image’s
fragment is only painted if its relative world position towards the
paint perspective matches the user view’s fusion buffer. We perform
a world position check instead of a depth check to ease aliasing
artifacts like paint acne (similar to shadow mapping’s shadow acne)
and help tiny creases to be painted instead of skipped.

A new scan starts with an empty virtual camera image. When
fusing the base color, we filter any non-existing color information to
prevent new scans from mixing invalid color into the fragment.

For rendering the active paint stroke Sect. 6.1 describes that a
fragment’s color is sampled from the paint texture at the same screen-
space coordinate, since the render and paint perspective match. This
is not the case for the projection, since the projector’s perspective is
independent from the user’s. To render the active paint stroke from a
projector’s perspective, each fragment must first be reprojected into
the viewer’s view frustum before that paint texture is sampled.

Another issue that arises when reprojecting a texture into another
is quantization errors. Hence, when reprojecting the paint texture
into a virtual camera image, small unpaintable areas are introduced,
especially around holes and at borders. To prevent this effect, we
dilate the reprojected paint by a few pixels before storing it in the
virtual camera image (see Fig. 9).

In Sect. 6.2 we explain that the paint texture is reprojected into
the scans and stored as virtual camera images. One might think that
the virtual camera images’ view frusta could be located anywhere
(sensible) in the scene, as long as the same perspective is used for
sampling it later when fusing. However, it is important that a virtual
camera image’s render frustum equals the scanning RGB camera’s
frustum. Since the object’s geometry is reconstructed from the RGB
camera’s point of view, we would suffer from quantization errors
and self-shadows, if we were to sample the color from a different
perspective. The perspectives of reconstructed depth and color must
match. Fig. 10 shows exemplarily, how a surface at small grazing
angles is painted wrongly if the virtual camera image is located at
the projector’s point of view (similar to the camera’s perspective,
but not the same).



8 EVALUATION

In our setup we employ an Intel Realsense SR300 RGB-D cam-
era (depth image: 640×480 pixels, RGB image: 1280×720 pixels
at 60 FPS or 1920× 1080 pixels at 30 FPS) and an NEC ME382U
projector (1920×1200 pixels) at 60 FPS. Our target objects are a
31 cm high 3D print of the Winged Victory of Samothrace statue
and several other ordinary items (e.g., shoes). Computations and
rendering are performed on an Intel Core i7-6700K (4.00GHz)
CPU, 32GB of RAM and an NVIDIA GeForce GTX 1080 graph-
ics card. Calibrating this setup (independently of the target object)
takes about 1−2 minutes and is only necessary if the relative pose
of camera to projector is changed. We prevent this by mounting both
on a cage (see Fig. 2).

8.1 Scanning

A new scan is triggered, if the target object is rotated or translated
far enough or if the existing quality is not sufficient. Since all of
our test objects possess a clearly defined top and bottom, we tested
the rotation trigger only along the up-axis. However, since the core
problem merely is finding the rotation-wise closest existing scan,
our approach is applicable to three-dimensional rotations as well. To
prevent any user or auxiliary objects to be captured by the scan, we
check that there is no movement in the scene before scanning. How-
ever, we noticed that users tend to pause for a moment, after having
moved the object, before stepping away. We therefore included a
1 second long waiting period combined with a red warning projec-
tion to signal users that a new scan starts shortly. Please see the
supplementary video for a demonstration of the scanning process.

The type of trigger issuing a new scan depends on the configured
thresholds and the shape of the target object. For small objects that
fit into the camera frustum we recommend a rotation threshold of 30°
to 45°, which we also applied to most of our tests. For larger objects
the threshold should be lower. The many folds of the Winged Victory
of Samothrace statue cause frequent self-shadowing during scanning.
Therefore, it is almost exclusively the quality trigger (set to 5 %)
issuing new scans when rotating the statue. For other small-sized
objects we tested, the rotation trigger fires in about one third of cases.
This difference shows that the number of scans required to cover the
entire target object strongly depends on the object’s shape. For the
Winged Victory of Samothrace statue and a 45° rotation threshold it
took seventeen scans on average to fully rotate it by 360°. In contrast,
using the same settings, a more regular shaped motorcycle helmet
required only twelve scans, since the quality trigger fired less often.
If not translating a small object from one side of the camera frustum
to the other on purpose, the translation trigger never triggers. The
natural position of the object lies at the center of the camera frustum
and the thus large capture area demands significant translation to
trigger a new scan. This behavior is by design, since small objects
expose new surface only by rotation and additional scans caused by
translation are redundant. With larger objects, it is exclusively the
translation trigger that fires upon translation and never the quality
trigger. This seems reasonable since standard camera lenses see
roughly the same of a surface regardless of the position within the
frustum, hence never observing a better quality. We assume that the
quality trigger could indeed complement the translation trigger upon
translation if using fisheye lenses.

8.2 Rendering

Instead of depth testing we apply FragmentFusion to render multi-
ple scans that (partially) cover the same surface. The benefit from
FragmentFusion over depth testing becomes especially apparent,
the more the scans overlap. An object particularly difficult to scan,
due to the many cloth folds and details, is the Winged Victory of
Samothrace statue, since its surface normals vary a lot. We scanned
its left side six times with a sensitive rotation threshold. The individ-
ual scans look similar to the human eye, but when rendering all of

(a) Depth Test (b) FragmentFusion

Figure 11. Six scans rendered with (a) depth testing and (b) Frag-
mentFusion. The top row depicts a default color shading, the bottom
row the Hausdorff distance to the ground truth mesh. FragmentFusion
reduces the layering effect and the quality is more homogeneous.

them with depth testing enabled, we see artifacts caused by depth
discontinuities that look like multiple layers on top of each other
(see Fig. 11a). FragmentFusion instead smooths out most of these
artifacts and the result is more pleasing to the eye (see Fig. 11b).
The bottom row of Fig. 11 compares both render results with the
original full mesh (ground truth) of the statue by applying the Haus-
dorff distance. Since both rendered geometries are ICP-fitted into
the ground truth mesh – similar to tracking the real-world object –
the overall Hausdorff mean is equivalent: 0.679mm (Depth Test)
vs. 0.643mm (FragmentFusion). FragmentFusion however reduces
the Hausdorff distance at critical areas where the depth deviation is
high. The Hausdorff images also depict a more homogeneous error
distribution (the less features are visible, the better), which makes
errors less noticeable.

We extend the original FragmentFusion algorithm by factoring
the reliability of a fragment into the weight computation (see Sect. 5).
The effectiveness becomes visible mostly in critical areas of low
confidence (see Fig. 12). The overall confidence in the confidence
map increases and some unreliable areas become more defined, if
more reliable surface data is available. In Fig. 12c, the folds are
sharpened and artifacts diminished.

8.3 Painting

The interactive painting results are best seen in the supplementary
video. Fig. 13 shows painting results for three different target objects.
The paint texture has a resolution of 1920× 1200 pixels and the
virtual camera images 3840×2400 pixels each. The drawings in (a)
and (c) were painted directly in our application. For the shoe, the
user first made several scans, then used the recorded RGB images as
reference, while painting the design with external 2D paint software.
Due to the matching perspectives of painting and scan, these 2D
drawings could directly be loaded as the virtual camera images.

An advantage of our system over regular painting pipelines is the



(a) Confidence (b) FragmentFusion (c) Details

Figure 12. Impact of the reliability factor. Top row without, bottom row
with confidence weighting. (a) The overall unreliability in the confi-
dence map decreases (smaller red areas). (b) Some folds become
more defined and artifacts are mitigated. The highlighted area is
magnified in (c) and contrast-adjusted for better visibility.

integration of paint and projection functionality into the scanning
system itself. Although still possible, the user is not forced to first
scan the entire object and only then paint it. Since our system scans
on-demand whenever a new surface part is exposed, the target object
is paintable after the first recorded structured light scan.

Although we demonstrate the results with a single projector, our
system is capable of multi-projection mapping. FragmentFusion
allows rendering the scans from any novel perspective. Thus, a
second projector would retrieve its own color and geometry buffer.
All projector framebuffers are then luminance-adjusted by the multi-
projection mapping algorithm [11, 22].

9 LESSONS LEARNED AND LIMITATIONS

In our current implementation the user has to stop moving the object,
once a new scan is triggered. Although we tried to keep the inter-
ruption short by using a phase shifting algorithm that requires only
few frames, the interruption does interfere with the intended move-
ment. There are structured light scanning methods that capture even
moving objects, e.g., Rusinkiewicz et al. [20], however extra care
has to be taken that the user is not included into the reconstruction.
Additionally, the perspectives of the reconstructed geometry and the
virtual camera images must match to avoid artifacts (see Fig. 10).

Our system allows for horizontal and vertical translation of the
target object, but not for significant movement into the back- and
foreground, e.g., when moving a large object further into the distance,
thereby exposing more of its surface. To support such use cases,
the translation trigger must be adapted. However, we did not study
how well the FragmentFusion algorithm handles the fusion of depth
maps with different resolutions.

We track all scans by observing the target object through the
camera’s depth stream. As a consequence, we do not need to attach
markers or tracking hardware to the object, which makes the system
more accessible. However, depth-based tracking tends to be noisy
(at least with consumer-grade hardware) and requires the object to
exhibit distinct depth features. Using our system as described, a user
could not paint the entire surface of rotationally symmetric objects
like a ball or vase, since the first scan would stick to the front and
not rotate with the object. Futhermore, our tracking does not support
deformation or changing the layout among multiple objects.

We fill small holes in the reconstruction to improve the quality.
However, hole filling should be performed with caution. If the filler

depth is significantly smaller (i.e., closer) than the original depth, it
overlays a reliable scan of the hole region, since FragmentFusion
classifies the filler depth as foreground and discards the rest.

We designed our system for painting white objects – similar to
drawing on a white sheet of paper. For painting colored objects, the
projection image must additionally balance out the surface color.

10 CONCLUSION

We presented a system that combines 3D scanning, FragmentFusion
and projection mapping to allow for spontaneous projection painting.
Automatic triggers issue new structured light scans, once the target
object is moved far enough to expose undiscovered surface areas to
the system. The reconstructed depth from all scans is fused in screen
space to generate novel synthetic views for the projector by applying
the FragmentFusion algorithm, similar to image-based rendering.
The user adds color to the projection by painting synthesized views
from a second, user-controlled perspective. The color is retroactively
incorporated into the scans and included in the fusion process.

For future work, we see great potential in improving the tracking
mechanism, as well as adding a more dynamic user input method.

ACKNOWLEDGMENTS

The original 3D model of Winged Victory of Samothrace (http:
//www.thingiverse.com/thing:196038) by CosmoWenman is
licensed under the Creative Commons - Attribution license. http:
//creativecommons.org/licenses/by/3.0/

REFERENCES

[1] H. Asayama, D. Iwai, and K. Sato. Fabricating Diminishable Visual

Markers for Geometric Registration in Projection Mapping. IEEE

Transactions on Visualization and Computer Graphics, 24(2):1091–

1102, Feb. 2018. doi: 10.1109/TVCG.2017.2657634

[2] D. Bandyopadhyay, R. Raskar, and H. Fuchs. Dynamic shader lamps

: painting on movable objects. In Proceedings of the IEEE and ACM

International Symposium on Augmented Reality, pp. 207–216, 2001.

doi: 10.1109/ISAR.2001.970539

[3] A. H. Bermano, M. Billeter, D. Iwai, and A. Grundhöfer. Makeup

Lamps: Live Augmentation of Human Faces via Projection. Computer

Graphics Forum, 36(2):311–323, May 2017. doi: 10.1111/cgf.13128

[4] A. Grundhöfer and I. Daisuke. Recent Advances in Projection Mapping

Algorithms, Hardware and Applications. Computer Graphics Forum,

37(2):653–675, 2018. doi: 10.1111/cgf.13387

[5] S. Izadi, A. Davison, A. Fitzgibbon, D. Kim, O. Hilliges, D. Molyneaux,

R. Newcombe, P. Kohli, J. Shotton, S. Hodges, and D. Freeman. Kinect-

Fusion: real-time 3D reconstruction and interaction using a moving

depth camera. In Proceedings of the 24th annual ACM symposium on

User interface software and technology - UIST ’11, p. 559. ACM Press,

Santa Barbara, California, USA, 2011. doi: 10.1145/2047196.2047270

[6] B. Jones, R. Sodhi, M. Murdock, R. Mehra, H. Benko, A. Wilson,

E. Ofek, B. MacIntyre, N. Raghuvanshi, and L. Shapira. RoomAlive:

Magical Experiences Enabled by Scalable, Adaptive Projector-camera

Units. In Proceedings of the 27th Annual ACM Symposium on User

Interface Software and Technology, UIST ’14. ACM, NY, USA, 2014.

doi: 10.1145/2642918.2647383

[7] B. R. Jones, H. Benko, E. Ofek, and A. D. Wilson. IllumiRoom:

Peripheral Projected Illusions for Interactive Experiences. In ACM

SIGGRAPH 2013 Emerging Technologies, SIGGRAPH ’13, pp. 7:1–

7:1. ACM, New York, NY, USA, 2013. doi: 10.1145/2503368.2503375

[8] P. Kurth, V. Lange, C. Siegl, M. Stamminger, and F. Bauer. Auto-

Calibration for Dynamic Multi-Projection Mapping on Arbitrary Sur-

faces. IEEE Transactions on Visualization and Computer Graphics,

24(11):2886–2894, Nov. 2018. doi: 10.1109/TVCG.2018.2868530

[9] V. Lange, P. Kurth, B. Keinert, M. Boss, M. Stamminger, and F. Bauer.

Proxy Painting: Digital Colorization of Real-world Objects. Journal

on Computing and Cultural Heritage, 13(3):1–20, Aug. 2020. doi: 10.

1145/3377145

http://www.thingiverse.com/thing:196038
http://www.thingiverse.com/thing:196038
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


(a) (b) (c)

Figure 13. Projection (painting) results on (a) a motorcycle helmet, (b) a shoe, and (c) the Winged Victory of Samothrace statue. The white
projections are shaded fusion results of successfully reconstructed areas.

[10] V. Lange, C. Siegl, M. Colaianni, P. Kurth, M. Stamminger, and

F. Bauer. Interactive Painting and Lighting in Dynamic Multi-

Projection Mapping. In Augmented Reality, Virtual Reality, and Com-

puter Graphics. AVR 2016, pp. 113–125. Springer, Cham, 2016. doi:

10.1007/978-3-319-40651-0 10

[11] V. Lange, C. Siegl, M. Colaianni, M. Stamminger, and F. Bauer. Robust

Blending and Occlusion Compensation in Dynamic Multi-Projection

Mapping. In Eurographics 2017 - Short Papers, 2017. doi: 10.2312/

egsh.20171000

[12] L. Miyashita, Y. Watanabe, and M. Ishikawa. Midas projection: Mark-

erless and modelless dynamic projection mapping for material represen-

tation. ACM Trans. Graph., 37(6), Dec. 2018. doi: 10.1145/3272127.

3275045

[13] D. Moreno, W. Y. Hwang, and G. Taubin. Rapid Hand Shape Recon-

struction with Chebyshev Phase Shifting. In 2016 Fourth International

Conference on 3D Vision (3DV), pp. 157–165, Oct. 2016. doi: 10.

1109/3DV.2016.24

[14] G. Narita, Y. Watanabe, and M. Ishikawa. Dynamic Projection Mapping

onto Deforming Non-Rigid Surface Using Deformable Dot Cluster

Marker. IEEE Transactions on Visualization and Computer Graphics,

23(3):1235–1248, Mar. 2017. doi: 10.1109/TVCG.2016.2592910

[15] R. A. Newcombe, A. Fitzgibbon, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohi, J. Shotton, and S. Hodges. Kinect-

Fusion: Real-time dense surface mapping and tracking. In 2011 10th

IEEE International Symposium on Mixed and Augmented Reality, pp.

127–136. IEEE, Basel, Oct. 2011. doi: 10.1109/ISMAR.2011.6092378

[16] H. Park, M.-H. Lee, S.-J. Kim, and J.-I. Park. Surface-Independent

Direct-Projected Augmented Reality. In D. Hutchison, T. Kanade,

J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-

strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Ty-

gar, M. Y. Vardi, G. Weikum, P. J. Narayanan, S. K. Nayar, and H.-Y.

Shum, eds., Computer Vision – ACCV 2006, vol. 3852, pp. 892–901.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. Series Title:

Lecture Notes in Computer Science. doi: 10.1007/11612704 89

[17] R. Raskar, G. Welch, K.-L. Low, and D. Bandyopadhyay. Shader

Lamps: Animating Real Objects With Image-Based Illumination. In

Proceedings of the 12th Eurographics Workshop on Rendering Tech-

niques. Springer-Verlag, London, 2001. doi: 10.1007/978-3-7091-6242

-2 9

[18] C. Resch, P. Keitler, and G. Klinker. Sticky Projections-A Model-Based

Approach to Interactive Shader Lamps Tracking. IEEE Transactions

on Visualization and Computer Graphics, 22(3):1291–1301, Mar. 2016.

doi: 10.1109/TVCG.2015.2450934

[19] D. Rückert, M. Innmann, and M. Stamminger. FragmentFusion: A

Light-Weight SLAM Pipeline for Dense Reconstruction. In 2019 IEEE

International Symposium on Mixed and Augmented Reality Adjunct

(ISMAR-Adjunct), pp. 342–347. IEEE, Beijing, China, Oct. 2019. doi:

10.1109/ISMAR-Adjunct.2019.00-15

[20] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D model

acquisition. ACM Transactions on Graphics, 21(3):438–446, July 2002.

doi: 10.1145/566654.566600

[21] H. Shum and S. B. Kang. Review of image-based rendering techniques.

p. 2. Perth, Australia, May 2000. doi: 10.1117/12.386541

[22] C. Siegl, M. Colaianni, L. Thies, J. Thies, M. Zollhöfer, S. Izadi,

M. Stamminger, and F. Bauer. Real-time Pixel Luminance Optimiza-

tion for Dynamic Multi-projection Mapping. ACM Trans. Graph.,

34(6):237:1–237:11, Oct. 2015. doi: 10.1145/2816795.2818111

[23] V. Srinivasan, H. C. Liu, and M. Halioua. Automated phase-measuring

profilometry: a phase mapping approach. Appl. Opt., 24(2):185–188,

Jan 1985. doi: 10.1364/AO.24.000185

[24] D. Tone, D. Iwai, S. Hiura, and K. Sato. FibAR: Embedding Optical

Fibers in 3D Printed Objects for Active Markers in Dynamic Projection

Mapping. IEEE Transactions on Visualization and Computer Graphics,

26(5):2030–2040, May 2020. doi: 10.1109/TVCG.2020.2973444

[25] Y. Watanabe, T. Kato, and M. ishikawa. Extended Dot Cluster Marker

for High-speed 3D Tracking in Dynamic Projection Mapping. In

2017 IEEE International Symposium on Mixed and Augmented Reality

(ISMAR), pp. 52–61. IEEE, Nantes, Oct. 2017. doi: 10.1109/ISMAR.

2017.22

[26] Y. Yasumuro, M. Imura, Y. Manabe, O. Oshiro, and K. Chihara.

Projection-based augmented reality with automated shape scanning. p.

555. San Jose, CA, Mar. 2005. doi: 10.1117/12.586303

[27] S. Zhang. High-speed 3D shape measurement with structured light

methods: A review. Optics and Lasers in Engineering, 106:119–131,

July 2018. doi: 10.1016/j.optlaseng.2018.02.017

[28] Y. Zhou, S. Xiao, N. Tang, Z. Wei, and X. Chen. Pmomo: Projection

Mapping on Movable 3D Object. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems, CHI ’16, pp.

781–790. ACM, New York, NY, USA, 2016. doi: 10.1145/2858036.

2858329

[29] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein,

and A. Kolb. State of the Art on 3D Reconstruction with RGB-D

Cameras. Computer Graphics Forum, 37(2):625–652, May 2018. doi:

10.1111/cgf.13386


	Introduction
	Related Work
	System Overview
	Scanning
	Reconstruction
	Scan Trigger
	Rotation Trigger
	Translation Trigger
	Quality Trigger

	Movement Detection
	Rendering New Perspectives
	Projection Painting
	Paint Texture
	Paint Reprojection

	Implementation Details

	Evaluation
	Scanning
	Rendering
	Painting

	Lessons Learned and Limitations
	Conclusion

