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a b s t r a c t

Recording clean pictures of projected images requires the projector and camera to be synchronized.
This task usually requires additional hardware or imposes major restrictions on the devices with
software-based approaches, e.g., a specific frame rate of the camera. We present a novel software-based
synchronization technique that supports projectors and cameras with different frame rates and at the
same time tolerates camera frame drops. We focus on the special needs of LCD projectors and the effect
of their liquid crystal response time on the projected image. By relying on visible marker detection
we entirely refrain from taking time measurements, allowing for a robust and fast synchronization.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many applications that employ a projector also require a cam-
ra to observe the projection. For example, in active stereo vision
he projector projects a known pattern onto a three-dimensional
urface and the camera captures the deformed projection to re-
onstruct the surface geometry. Depending on the reconstruction
ethod, the patterns thereby range from discrete black-white
atterns to continuous grayscale gradients to color-coded pat-
erns. Whereas in this example the only purpose of the projection
mage is to be recorded by the camera and it is thus tailored to its
haracteristics, in other applications the camera is not the main
pectator. In the Spatial Augmented Reality (SAR) domain, pro-
ection mapping systems project arbitrary textures onto planar
r three-dimensional surfaces to entertain or convey information
o a user. In feedback-loop systems, such an application is com-
lemented with a camera observing the user-oriented projection
o report errors in the projection quality.

In any of these examples it is mandatory to project a sequence
f images, take clean photos of them with a camera, and match
he photos to the original images. However, without additional
ardware to synchronize projector and camera, the devices run
ndependently from each other and at possibly different frame
ates. Since neither projecting an image nor capturing one is an
nstantaneous task, synchronized projection captures require ad-
usting the duration that a single image is projected. The shorter
hat duration is, the better the performance of the application.

✩ This article was recommended for publication by Kun Xu.
∗ Corresponding author.

E-mail addresses: vanessa.klein@fau.de (V. Klein), frank.bauer@fau.de
F. Bauer).
ttps://doi.org/10.1016/j.gvc.2021.200034
666-6294/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
Our contribution is a software-based synchronization between
an LCD projector and a camera. The frame rates of the devices
may differ but should be predominantly constant. Our technique
specifically considers the slow reaction time of the LCD tech-
nology. We present multiple synchronization strategies — each
suited for different application needs and robustness require-
ments, including a detection and support for camera frame drops.
Wait durations are adaptively reduced to achieve fast results with
hardware of which only the frame rates are known.

2. Related work

Synchronization between a projector and camera has been
achieved in the past. Previous techniques are divided into two
groups: hardware- and software-based methods.

In hardware-based approaches, an external device acts as
the pulse generator which drives projector and camera. Zhang
et al. [1] therefore disable the projector’s timing signal and
employ a microcontroller-based circuit as the trigger signal. In a
similar fashion, Grundhöfer et al. [2] install customized electron-
ics. Wissmann et al. [3] synchronize a DLP projector with the help
of its two optical tracks that control the camera exposure time.
Other hardware-based systems are presented in [4]–[5][6]–[7].

On the software side, Jaeggli et al. [8] present a synchroniza-
tion algorithm for LCD projectors that measures delays in the
setup as a preprocessing step. Although their approach is a good
approximation of the constant latencies involved in their setup,
correct photos of the projection cannot be guaranteed, as they do
not elaborate the effects of the projector’s liquid crystal response
time and rely on a non-real-time system’s time measurement
precision. Petković et al. [9]–[10] indirectly measure the delay
between projection and photo exposure start by back-calculating
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Photos captured of a projected, numbered image sequence (sea, clouds, desert); projector: 60 FPS, camera: 1000 FPS, every other camera frame is depicted.
rtifacts from projector frame 0 are still visible in projector frame 2 (k–o). (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
inear factors from recorded gray values from a black/white cali-
ration sequence. However, their approach implicitly expects an
mmediate transition from one projector frame to the next and is
hus not applicable to the slow response time of LCD projectors.
heir algorithm is also designed for cameras that can be triggered
ia software, not fixed-frame-rate cameras. El Asmi et al. [11]
ssume the same linear mixture model and expect projector and
amera to share the same frame rate. In a related domain, Perli at
l. [12] take synchronized photos of an LCD screen. Our algorithm
s also based on marker detection, but we do not impose a frame-
ate restriction on the camera. Altogether, their synchronization
eeds differ from ours in that their goal is the marker detection
tself, while we aspire the best possible recording of an LCD
isplay/projector in general. For the same reason we do not
efer to related work from the field of unsynchronized captures,
.g., Moreno et al. [13].
To the best of our knowledge, this is the first software-based

ynchronization of projector and camera that supports unequal
rame rates, considers the special needs of LCD projectors and
uarantees robust results.

. Hardware issues

Several hardware properties of LCD projectors and digital cam-
ras complicate synchronization and have to be considered for
software-based approach. Fig. 1 depicts a numbered image

equence that is projected at 60 FPS and recorded with a 1000 FPS
amera. The photos demonstrate that each projector frame is con-
tructed from top to bottom (for this specific model) and, most
mportantly, that every photo after the first one is a mixture of
t least two projector frames, even after the refresh has reached
he bottom. Upon close inspection of Fig. 1(o) (third projected
rame) one can even see traces from the first frame’s red zero.
hese mixtures are a result of the hardware details of both the
amera and the projector.

.1. Camera properties

Digital cameras function by collecting light that falls on a
ensor. The spatially different amounts of light are converted
o digital signals and determine the brightness and color values
f the pixels. During this light collection duration, the exposure
ime, the scene must remain as static as possible. Otherwise, the
ight from the changing scene reflects differently, mixes with the
2

previous value, and as a result makes the photo blurry. For truly
perfect photos of a projection, the projection image thus must not
change during the camera’s exposure time.

Aside from the inherent technological issues within digital
cameras, our work focuses on cameras with a fixed frame rate,
e.g., ordinary webcams. In contrast to system cameras, the user
cannot control the exact moment when the photo is captured.
Instead, the photos are recorded in a continuous fixed-frame-rate
stream. However, although the camera might record its photos
at a fixed frame rate, the application probably does not receive
the photo stream as such. To transfer the recordings from the
camera to the computer or a mobile device, the devices must
be connected, e.g., by a USB cable. Each connection medium
introduces a layer of latency that is presumably not constant
across all frames. Measuring latencies, however, is problematic.
We therefore fully abstain from time measurements to make our
algorithm as broadly deployable as possible.

Finally, we have to acknowledge that even the best hardware
can fail. Frame drops, i.e. missing frames, may occur as a result of
problems from within the camera or simply because the frame-
collecting thread was not scheduled fast enough by the operating
system. We show in Section 6 that frame drops do indeed occur
frequently with commodity hardware.

3.2. LCD projector properties

An LCD projector employs the Liquid Crystal Display (LCD)
technology to assemble a single frame. Nowadays, an LCD pro-
jector usually has three LCD panels installed (3LCD) – one for
each color channel (red, green, blue). Each LCD panel is composed
as a grid, resembling the pixels, and it acts as a gateway for the
projector’s light source. By adjusting each grid cell’s voltage, the
liquid crystals (LC) in that cell twist by a voltage-dependent angle
and thereby restrict the amount of light that can physically pass
through. Similar to a slide show the panel blocks the light for dark
pixels and passes through more light the brighter the pixels are.
By superimposing the independently constructed red, green and
blue images with a dichroic prism cube, each pixel contains all
three colors and the projected image appears colored.

Although modern LCD panels are fast, they do not transi-
tion instantaneously from one frame to the next. To accurately
measure the response time, the time it takes to transition from
one start color value to another target value, one would need a
detector that is ten times faster [14]. Clearly, such a device is not
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Fig. 2. Overview of all latencies that must be considered when projecting and
capturing image B. In this example, the liquid crystal response time equals one
full projector frame duration. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

readily available. Additionally, the response time depends signif-
icantly on the luminance start and target values, white↔black
ransitions usually being faster than mid-tone transitions [15]–
16]. This property makes it basically impossible to know in
dvance or measure the response time of a single pixel with
ertainty.
Techniques like Dynamic Capacitance Compensation (DCC)

mprove the response time by shortly applying more/less volt-
ge than required. These improvements require that frames are
uffered to precompute the optimal voltage and thus come at
he cost of an increased latency between a frame being ready for
rojection and actually being projected.
Standardized by ISO 9241-305, the response time of a transi-

ion is the duration it takes for transitioning from 10% to 90% of its
tart and target luminance levels. In 2002, Suzuki et al. [17] report
verage response times between 10ms to 40ms, depending on
he type of LCD panel and compensation method, with some
ransitions taking up to nearly 60ms. Elze [15] reports response
imes between 5ms to 17ms in 2010. They explicitly state that
‘[t]he transition can exceed one frame’’. Elze and Tanner [16]
ater show that DCC is commonly used in modern panels, which
esults in average response times of less than 10ms. Although
e may expect even faster response times in future hardware,
.g., Chen et al. [18] propose a liquid crystal mixture with an
verage response time of 1.29ms, LCD technology that is in
se today is still limited to response times in the milliseconds
ange, as Fig. 1 demonstrates. With commodity projector and
amera hardware also exhibiting frame rates in that range, the
esponse time of liquid crystals must not be underestimated
hen synchronizing the devices.

. Sequential Marker-based synchronization

To synchronize projector and camera in an entirely software-
ased manner, we consider the full duration it takes to project an
mage and take a photo of it. Besides the device-specific latencies,
he combination of both devices introduces another unknown
emporal gap between the start point of a projector frame and
he start point of the respective camera frame, which we call the
amera offset. If projector and camera share the same frame rate,
he camera offset is constant, otherwise the offset changes with
ach frame. Thus, the duration of a single synchronized image
apture task is summed up by the projector latency, liquid crystal
esponse time, camera offset, camera exposure time and camera
atency (see Fig. 2).

Even if we were to assume that the projector latency and
amera latency are constant, reliably measuring all latencies with
olor-dependent liquid crystal response times and continuously

hanging camera offsets is a nearly impossible task. It is, however,

3

Fig. 3. To record image B, a transition frame is projected, followed by the trigger
frame that contains a detectable marker. The projection is maintained with wait
frames until the correct photo b2 is received by the processing computer (which
includes the camera latency).

not necessary to measure these latencies, if we reduce the syn-
chronization problem to knowing from the camera frame itself to
hich projector frame it corresponds. We base our core algorithm
n two assumptions:

1. Whenever parts of a projection image B are detectable in a
camera frame, image B was (temporarily) being projected
(voluntarily or involuntarily due to the LC response time
afterglow) during the camera frame’s exposure time.

2. Camera frames are delivered in their recording order (with
arbitrary delays in between).

nder real-world conditions it is important to note that rule 1
annot be reversed. Since no detector is perfect, not detecting
races of image B is not a guarantee that image B was not present
uring the exposure time.
By embedding a detectable marker (e.g., ArUco marker [19])

nto the image, any camera photo of its projection is hereby
abeled with that marker and a semantic connection between
he projector and camera frame is established. Consequently, if
he marker is detected in a camera frame, it is guaranteed that
his and any subsequent camera frame capture the same image
until the projection itself changes). To take clean photos that are
ot affected by a previous image, the marker must be embedded
nly after the projector’s LC response time for that image has
assed. However, due to the exposure duration, the first camera
rame that exhibits the marker may still include traces from the
revious projection image before the projection was stable. It is
hus the second camera image in that sequence that is the first
orrect recording of the projection.
Unfortunately it is impossible to predict the LC response time

ccurately without measuring any possible luminance transition
eforehand. Elze and Tanner [16] even report different LC re-
ponse times for the same transition for one of their tested LCD
onitors. We therefore propose a pragmatic approach. Since a
arker can be incorporated into the projection only at a regular

rame update, one does not need to know the exact LC response
ime. Instead, the user merely has to decide after how many
rojector frames the projection is stable. With modern hardware
hat applies acceleration techniques it is reasonable to assume
hat a regular 60 FPS projector achieves its transitions within one
rame. For out-dated hardware or safety-critical applications one
hould follow the slowest reported LC response time in literature
r, depending on the application, decide how much damage slight
races of a previous image would do. In the following figures
e depict the LC response time with a single transition frame
ut keep explanations and formulas universally valid with an
rbitrary number of transition frames.
Fig. 3 visualizes the basic algorithm. For a new image B the

rojection starts with as many transition frames as required; no
arker is included yet. After the transition phase a marker that is
nique to B is embedded into the image which is then projected
s the trigger frame. The projection is kept stable by continuing to

project the image (wait frames) until it is successfully recorded.
Eventually, a camera frame b contains the detectable marker for
1
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Fig. 4. In the unrealistic worst case, the marker is first detected in camera frame
b3 , since the exposure for b2 started before the marker became visible.

the first time. This is the trigger for the application to select the
next incoming camera frame b2 as the correct result. Note that
although in this example b0 and b1 contain the marker from the
previous image A due to slow LC response times, it would be
equally possible that the marker is not detectable anymore.

5. Pipelined synchronization

The algorithm from the previous section is simple and robust
towards frame drops, since the projection of the image and its
marker is maintained until the correct photo is received. How-
ever, in many applications the next image to project does not
depend on the photo of the previous one. For example, when pro-
jecting a Gray code sequence to perform 3D scanning, the images’
pattern content is determinable from the start. In that case, a lot
of time is wasted by projecting an unnecessary multitude of wait
frames, which produces a redundant supply of their photos (every
camera frame after b2 in Fig. 3). Their amount is predominantly
determined by the projector and camera latency. To overcome
these, the idea is to send the next image(s) to the projector before
the current image was recorded yet, knowing that the camera will
still capture the image in the near future. The idea of pipelining
images is not new and was already discussed by Jaeggli et al. [8].
Instead of measuring the time that can be saved, we apply a
theoretical worst-case analysis of how many wait frames it takes
to know with certainty that an image will be recorded success-
fully. We then modify the algorithm to automatically adapt to an
average-case wait frame count.

5.1. Worst-case analysis

The number of required wait frames depends on both the
projector’s ability to project a detectable marker and the camera
to capture a photo in which the marker is detectable. For the
worst-case analysis we make some unrealistic assumptions that
go to the very limits of how cameras and LCD projectors operate.
We assume that. . .

• . . . the trigger marker becomes visible only at the very end
of the trigger frame.

• . . . the marker is detectable in a camera frame only if the
marker was visible for the entire exposure time.

5.1.1. Wait frame count
With these worst-case assumptions, the worst-case camera

offset for detecting the marker is almost the full duration of
a camera frame, i.e., the frame’s exposure starts just a fraction
before the marker becomes visible (see b2 in Fig. 4). Camera frame
b3 is thus the first frame to detect the marker and b4 therefore
the successful recording. Hence, the worst-case wait frame count
is the number of projector frames spanning three camera frames
(b2, b3, b4):

W =

⌈
3 · Fp

⌉
(1)
Fc
4

where Fp and Fc denote the frame rate (in FPS) of the projector
and camera respectively. By projecting the worst case number of
wait frames it is guaranteed, for every possible camera offset, that
a correct photo of the projection image will be recorded in the
future. Therefore the next image C may be sent into the projection
pipeline immediately afterwards.

5.1.2. Validation
The worst-case analysis is only valid if the frame rates of pro-

jector and camera are constant. Once a camera frame is dropped,
the worst-case wait frame count is not sufficient anymore. If
b4 was dropped in Fig. 4, the next camera frame would al-
ready contain the next image C. It is deceptive to try and detect
such cases to reject a photo by implementing an additional new
marker for the successive transition frame(s) of C. Remember
from Section 4 that not detecting a marker is never a guarantee
for the marker not actually being present in a photo. To make
the synchronization frame-drop-robust, it is necessary to prevent
such false-negative failure detection cases. Therefore, we do not
seek to detect errors but to validate correct recordings and in case
of doubt discard a correct camera frame. It is up to the application
to decide if a rejected recording is ignored or if the corresponding
image is scheduled again for projection. In any case it is important
to notify the application that an error occurred. For the sake of
completeness we mention that one can achieve a partial frame-
drop-robustness by increasing the wait frame count to cover as
many camera frame drops as required. However, in case there
is one more consecutive frame drop than expected, the error
goes unnoticed. Moreover, the additional wait frames quickly add
up when allowing multiple frame drops in a row and are thus
time-costly.

Without reliable time measurements to detect frame drops
we instead build a validation process on the marker detection to
prove that a frame was recorded correctly. It is not sufficient to
check if the marker is part of the supposedly correct photo to
validate it. Depending on the LC response time it is possible that
the marker is still detectable in frame c0 (see Fig. 4), although the
camera frame is already recording mostly image C. To support
frame drops and occasionally malfunctioning marker detectors,
we define the supposedly correct camera frame as the candidate.
A candidate frame must be validated before being declared the
result photo. Therefore, if the marker is once again detected after
recording the candidate, the candidate is validated, otherwise
invalidated. To reliably detect the marker this additional time, the
worst-case wait-frame equation (see Eq. (1)) must be updated as
follows:

Wv =

⌈
4 · Fp
Fc

⌉
(2)

Additionally, it is necessary to extend the projection by a
fourth kind of frame, the end frame, without any marker. The pro-
jection sequence must contain as many end frames as transition
frames. They thus resemble a transition time for the projected
marker — from presence to complete absence. The end frames
guarantee that the validating frame is the only camera frame that
can possibly contain (traces of) the marker and the next image C
already. Any validated candidate before must therefore contain
only image B.

In Fig. 5 the worst-case scenario is extended by the additional
wait and end frames. After the marker is detected for the first
time in camera frame b3, the next frame b4 automatically be-
comes the candidate. The marker is once again detected in frame
b5, which validates b4 as the correct result. If b4 was dropped, the
next frame delivered after b3 is b5 and becomes the candidate.
It then depends on the marker detection of b6 if it is validated.
Similarly, in case b and b were dropped, the validation of
4 5



V. Klein, M. Edel, M. Stamminger et al. Graphics and Visual Computing 5 (2021) 200034

a

m
t
a
m
t
t
c
A

a
d
f
i
i
p
e
e
i
w
i
p
f
s

m
f
f

s
i
a
o

Fig. 5. The example from Fig. 4 extended by additional wait and end frames.
Since the marker is detected in b5 , it validates the candidate b4 .

candidate b6 depends on c0. Since the marker from the last wait
frame might still be visible due to slow LC response times, it
is important that the end frame maintains image B such that
b6 could be correctly validated (in contrast to the false-negative
scenario described above).

5.1.3. Timeout invalidation
The last camera frame that can possibly contain a detectable

marker of an image is a frame that starts exposure right be-
fore the end of the last projector end frame (second inverted
worst-case assumption). There is thus an upper limit (timeout)
of camera frames that can validate a candidate:

m =
1 + W + E

Fp
limit = 1 + ⌈Fc · m⌉ − 2

(3)

E denotes the number of end frames (equals the number of
transition frames).m describes the longest possible duration (best
case) that the marker of an image is visible in the projection,
spanning the trigger frame, wait and end frames. To consider
the above mentioned last camera frame that can possibly contain
the marker, Fc · m is rounded up. Additionally, the timeout must
include the earliest photo (+1) that can possibly contain the
marker, ending a fraction after the beginning of the trigger frame.
If more than limit camera frames were received after candidate
nomination (−2) and neither could validate it, the candidate is
ultimately invalidated. In case a marker of a future image is
detected without having validated the candidate of the last image
first, the candidate and all potentially skipped recording tasks
in between are also invalidated. By linking the timeout to the
marker detection, the algorithm also becomes robust towards
changes in the camera latency.

Since the timeout is based on having received the candidate
frame, it is necessary to add filler images at the end of the entire
image sequence. Otherwise it is, in theory, possible that the last
frame never finishes. If, for example, the last image to project
and record is invalidated, it takes an entire projector latency to
project the image again, during which time the projected content
is undefined. Since this duration is unknown it is impossible to set
a fixed timeout. With bad luck it is then possible that frame drops
cause the system to never detect one of the image’s markers. The
system would then search for the last image in an endless loop,
since no successive image’s marker would report the skip. Filler
images keep the pipeline running in such a case and report the
skip.

5.2. Adaptive algorithm

It is obvious that the worst-case analysis wastes a lot of time
to cover unrealistic hardware behaviors. In Fig. 5 the marker
synchronization fails to recognize the frames b2, b3, b5 and b6
as valid frames due to a lot of algorithmic overhead. To speed

the general algorithm up we cannot make assumptions about the c

5

Fig. 6. Without frame drops and under realistic conditions the frames b4 , b5
nd b6 are redundant.

arker detector. Instead, we exploit the validation process to es-
imate how many projector frames can be saved. After validating
candidate we perform a retrospective analysis that counts how
any camera frames after the validation frame would also be able

o validate the candidate. Fig. 6 depicts a more realistic scenario
han the worst-case assumption. Camera frame b1 is the first to
ontain a detectable marker, thus assigning b2 the candidate role.
fter validation through b3, the frames b4, b5 and b6 all contain

the detectable marker and could also act as the validation frame.
In that case, the number of excess camera frames is 3. Failures
are recorded with a negative count (candidate invalidation: −1,
image skipped entirely: −3).

The number of excess frames varies with each projected im-
ge and is predominantly influenced by the camera offset and
ropped frames. Estimating the actual required number of wait
rames must therefore be determined by considering multiple
mages. We base the optimal number of frames to analyze on the
dea that failures are acceptable if it takes equal or less time to
roject the failures again than projecting the entire sequence with
nough wait frames to prevent failures in the first place. As an
xample, we consider an image sequence where each of the seven
mages took seven projector frames in total. Since all candidates
ere successfully validated, the total frame cost of the sequence

s 6 · 7 = 42. If, instead, the images were projected only with six
rojector frames each, enough frames are saved to compensate
or one failure that must be projected again (assuming that the
econd projection of the failure image is successful): 6 ·6+1 ·6 =

42. Hence, we define the window size of images to investigate
with regard to excess frames as the current total projector frame
count plus one:

S = T + 1 + Wi + E + 1 (4)

where T , Wi and E are the currently configured numbers of
transition, wait and end frames respectively. If the last S images
contain only a single failure, we assume to have reached the
optimal wait frame count. If more/less failures are detected, the
wait frame count must be increased/decreased. In that case, the
S images are sorted by their excess frame count and the number
of wait frames is updated based on the excess frames X of the
second worst image (to allow for a single failure in the future):

Wi+1 =

⎧⎪⎪⎨⎪⎪⎩
Wi + max

(
1,

⌊
−X ·Fp
Fc

⌋)
for failures > 1

max
(
0,Wi −

⌈
X ·Fp
Fc

⌉)
for failures < 1

Wi else

(5)

Too many failures guarantee a wait frame count increase (Wi+

ax(1, . . .)) and conservatively (floor function) add the missing
rames. In contrast, a lack of failures is approached boldly (ceil
unction) by reducing the wait frame count.

Due to the projector latency and unfinished recording tasks
till in the pipeline, extra care must be taken to exclude the
mages’ excess frames from the analysis that were recorded with
n old configuration of wait frames. If the required window size
f S excess frame counts is not yet reached after a wait frame
ount change, we still monitor the situation of the available data.
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Fig. 7. b4 is validated by detecting the failure marker in b5 .

f more than a single failure occurred in this set of reduced size,
e speed up the reaction time by computing the new increased
ait frame count immediately.

.3. Failure marker algorithm

The adaptive algorithm aims at reducing wait frames to save
ime. Although this reduction includes the additional wait frames
or validation, the end frames remain a constant overhead, espe-
ially if many transition frames are configured. However, requir-
ng as many end frames as transition frames is not necessary if
he marker detector fails early enough after the projector stops
rojecting it. In this section we present another adaptive algo-
ithm that breaks some of our initial rules and is thus slightly less
obust, but might still be a sufficiently robust heuristic for many
pplications.
For this section we assume that a marker detector is more

ikely to detect a marker that is voluntarily projected than a
arker that is involuntarily projected (by means of the LC re-
ponse time). It must thus not be possible that the detection
ails while the marker is projected and then succeeds afterwards,
hen the marker is only barely visible due to the LC response
ime. Under these conditions we modify the validation from
ection 5.1.2 as follows: Project the image with the original wait
rame count from Eq. (1). Then, instead of padding the projection
ith marker-less end frames, embed a new failure marker into
he end frames (unique per image). Furthermore, instead of re-
eating the end frames as many times as transition frames exist,
epeat it only for so long that there is a high chance of detecting
t once:

f =

⌈
Fp
Fc

⌉
(6)

Similarly to before, a candidate is then validated by another
subsequent camera frame if that frame contains the detectable
main or failure marker. However, additionally, the candidate itself
must not contain the failure marker. A candidate is invalidated if
it contains the failure marker or if the failure marker could not
be detected in a subsequent frame up to the adjusted timeout
limit. In Fig. 7, the candidate frame b4 does not contain the failure
marker. The failure marker is detected in the next frame, b5,
which validates the candidate. In case b4 is dropped, b5 becomes
the candidate. If the failure marker is correctly identified, it is im-
mediately invalidated. If the detection fails, it is still possible that
the failure marker is detected in c0, which would also correctly
validate b5. If it is not detected, the initial assumption from above
holds and there is no subsequent camera frame containing the
detectable failure marker, which invalidates b5 after the timeout.

Similar to the original adaptive approach (see Section 5.2), the
excess frames for each image are counted until a failure marker
is detected. If the failure marker is detected in the trigger or
candidate frame, negative excess frames are stored (−2 and −1
respectively). It is important to note that, even without frame
drops, in some hardware configurations an unfortunate camera
offset can lead to skipping the failure marker entirely for an image
(e.g., both devices 60 FPS, camera offset ca. 50%). We count such
failures like a regular camera-offset- or frame-drop-caused failure
6

Fig. 8. c0 is incorrectly validated by c1 .

with an excess frame count of −1. However, for devices with
identical frame rate the situation should be monitored and, in
case of need, the end frame count increased by one to prevent
an endless loop. If an image was skipped entirely, it is rated with
an excess frame count of −3.

Fig. 8 visualizes the aforementioned flaw in the algorithm. Due
to two consecutive frame drops (b4 and b5), the candidate c0
is incorrectly validated by c1, since the failure marker detection
failed for c0, but succeeded for c1. Checking c0 for the main marker
would also be no reliable remedy for the problem, if the transition
frame count were larger than 1 in that example.

6. Results

We tested our algorithms with two 3LCD projectors and cam-
eras, each connected to a standard Windows 10 workstation:

• NEC@60: projector NEC NP-P451WG, manufactured January
2015, 1280 × 800 pixels, 60 FPS.

• Epson@59: projector Epson EB-L510U, manufactured pre-
sumably 2019, 1920 × 1200 pixels, 59 FPS

• Realsense@30/@60: camera Intel Realsense SR300,
1920 × 1080 pixels at 30 FPS or 1280 × 720 pixels at 60
FPS

• Svpro@120: camera Svpro DESVUSBFHD01MSFV USB Cam-
era Module, 640 × 480 pixels at 120 FPS

The photos of Fig. 1 were recorded with a Sony RX100 V camera.
Since it does not support streaming directly to a computer, it was
not further included in our tests.

6.1. Method

For each projector/camera-pair and synchronization strategy
we conducted 100 experiments by projecting and recording 100
images each (without filler images). For the algorithms that rely
on candidate validation, images were projected anew immedi-
ately after detecting invalidations. We embedded and detected
ArUco markers [19] with the OpenCV library [20]. The number of
distinct ArUco markers was restricted to 10 for practical reasons.
This indirectly limits our pipeline synchronization algorithms to
tolerating consecutive frame drops for at most 9 (4 with failure
markers) entire image projection and recording tasks. To make
the marker detection as fast as possible and not have the LC
response time of the previous marker interfere, we alternated
between two marker positions within the image for each two
distinct consecutive markers. We noticed that the marker de-
tection failed occasionally but repeatedly with the same images.
Upon further inspection it seems like the default ArUco marker
detection from OpenCV is impaired by some artifacts of the LC
response time of the previous image (see Fig. 9), if the number
of transition frames was too low. The markers’ background was
therefore permanently kept white.

Since the ArUco marker detection on a full-resolution cam-
era image can exceed the camera frame time, on start-up we
automatically determine the marker region of interest (ROI) in
the camera image by projecting markers at both positions. The
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Fig. 9. The marker from (a) is clearly visible for a human spectator in the
rojected image (b), but could not be automatically detected.

OI is then derived from the corner detection in the first camera
mage that includes both markers. This initial ROI detection time
about 250ms) is not included in our statistics. From this point
n, the markers are searched for only in the ROI, which keeps
he run-time detection time negligibly below 1ms.

The projectors had a warm-up time of at least 1 h to increase
he LCD-panel temperature, which in turn decreases the LC re-
ponse time [21]. For the Realsense@30/@60 camera we found
hat less than 1% of all experiments exhibit frame drops (duration
etween two consecutive camera frames exceeding 150% of the
xpected duration). To illustrate the basic algorithmic perfor-
ance, we have excluded those outlier runs from the statistics
nd replaced them with runs without frame drops. In contrast,
he Svpro@120 camera exhibits a particularly high frame drop
ate (see Fig. 10). During a 1-minute period the camera deliv-
red only 4413 frames instead of expected 7200. While small
eviations can be explained by rounding errors and imprecise
ime measuring, the histogram shows peaks around 13ms and
4ms, suggesting up to two consecutive frame drops on a regular
asis. The histograms’ distributions also demonstrate the need of
oftware-based synchronization to support varying camera frame
ates. On a non-real-time system we cannot determine whether
he distribution of received frame rates is a result of an actual
arying frame rate of the camera itself or if it is a varying accu-
ulation of latencies from the camera connection to the receiving

hread. While our pipeline methods expect a constant camera
rame rate for the basic algorithmic design (see Section 5.1.1),
he validation process guarantees correct recordings even if the
amera frame rate varies. Please see the supplementary video as
demonstration of our method.

.2. Evaluation

Fig. 1 depicts photos from the NEC@60 projector and suggests
hat a single transition frame is not sufficient for the projector.
7

We could confirm this assumption with the Svpro@120 camera
nd found that even two transition frames are insufficient (see
ig. 11). In some rare images one can see artifacts of the previ-
us image in the validated candidate frame. We could not find
uch artifacts anymore after projecting three transition frames.
n contrast, one transition frame appears to be sufficient for
he Epson@59 projector. We show timing statistics for multiple
ettings with both projectors for reference (see Tables 1 and 2).
Depending on the hardware, configured number of transition

rames and synchronization strategy, the 100 payload images
re projected and recorded with 3.97 FPS to 14.84 FPS. Generally
peaking, the sequential synchronization (see Section 4) is the
lowest of our tested synchronization techniques. It is, however,
ifficult to quantify its performance for a general-purpose setup,
ince the performance mostly depends on the involved projector
nd camera latencies. The relations change if the camera is
ignificantly slower than the projector, since both the worst-case
stimate and the validation process are based on the camera
rame rate. Moreover, the validation process becomes more time-
ostly the more transition frames are configured, which directly
nfluences the number of end frames. If these effects add up
e.g., NEC@60/Realsense@30, 3 transition frames), the sequen-
ial synchronization performs better than pipeline techniques
ith validation. It is, however, outperformed by the failure-
arker synchronization, which exhibits a constant validation
verhead, regardless of the transition frames.
The worst-case synchronization (without validation) demon-

trates the pipeline speed-up, being consistently faster than the
equential approach. The performance becomes drastically worse
hen adding the candidate validation to the method, being usu-
lly the second slowest or even slowest technique. In return, the
esults are robust. Although we filtered the frame-drop runs from
he Realsense@30/60 experiments, the total number of pro-
ection tasks (n) is consistently slightly higher (e.g., Epson@59/
ealsense@30: 100.08) than the expected 100. This deviation
ay imply rare marker detection failures or that the real camera

rame rate (before transferring the image via cable or network) is
ot constant, which impacts the worst-case analysis.
The wait frame overhead of the worst-case methods is reduced

y the adaptive approach, making it generally fast. Though, it
annot compensate for the additional validation cost and is thus
ostly slower than the worst-case algorithm without validation.
he performance can only be improved further by cutting costs
n the validation, demonstrated by the failure-marker synchro-
ization. The method is usually the fastest or on par with the
orst-case technique without synchronization, while providing
ore robust results.
A notable exception to the aforementioned performance ad-

antage of the adaptive algorithm is the Svpro@120 camera.
Fig. 10. Frame duration times histogram of the cameras tested over a 1-minute period.
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Table 1
Epson@59 statistics. valid.: if a validation was performed, W ∗: initial wait frame count, C: avg. percentage of wait frame count changes

(increase/decrease), n: avg. number of projection tasks, T : avg. test run duration, subscripts: number of configured transition frames.
Epson@59/Svpro@120

Strategy Valid. W ∗ C1 ↑/ ↓ (%) n1 T1 (s) C2 ↑/ ↓ (%) n2 T2 (s)

Sequential – – – 100.00 12.864 – 100.00 14.397
Worst case ✗ 2 0.00/0.00 100.00 6.738 0.00/0.00 100.00 8.402
Worst case ✓ 2 0.00/0.00 100.24 8.423 0.00/0.00 100.11 11.736
Adaptive ✓ 2 5.35/5.53 119.56 9.215 3.79/3.91 112.70 12.699
Adaptive ✓ 1 5.82/5.20 121.83 9.326 4.47/3.72 114.92 12.874
Fail. marker ✓F 2 0.58/1.21 104.52 7.188 2.79/3.62 113.03 9.417

Epson@59/Realsense@60

Strategy Valid. W ∗ C1 ↑/ ↓ (%) n1 T1 (s) C2 ↑/ ↓ (%) n2 T2 (s)

Sequential – – – 100.00 12.288 – 100.00 13.955
Worst case ✗ 3 0.00/0.00 100.00 8.407 0.00/0.00 100.00 10.076
Worst case ✓ 4 0.00/0.00 100.20 11.872 0.00/0.00 100.11 15.187
Adaptive ✓ 4 2.32/3.19 113.05 9.844 0.00/1.00 100.26 12.380
Adaptive ✓ 2 2.65/2.65 115.42 9.606 0.04/0.03 100.44 12.002
Fail. marker ✓F 3 0.40/1.25 103.25 7.377 0.09/1.02 101.44 8.918

Epson@59/Realsense@30

Strategy Valid. W ∗ C1 ↑/ ↓ (%) n1 T1 (s) C2 ↑/ ↓ (%) n2 T2 (s)

Sequential – – – 100.00 16.706 – 100.00 16.935
Worst case ✗ 6 0.00/0.00 100.00 13.392 0.00/0.00 100.00 15.132
Worst case ✓ 8 0.00/0.00 100.08 18.496 0.00/0.00 100.16 21.823
Adaptive ✓ 8 0.09/1.07 100.73 14.986 0.08/1.05 100.40 18.234
Adaptive ✓ 6 0.11/0.37 100.57 14.335 0.12/0.36 100.60 17.673
Adaptive ✓ 5 0.07/0.22 100.49 13.049 0.09/0.15 100.50 16.601
Adaptive ✓ 4 0.76/0.06 102.56 13.161 0.81/0.09 102.82 16.753
Fail. marker ✓F 6 0.07/1.11 100.30 12.460 0.01/1.00 100.14 15.691
Fig. 11. Validated NEC@60 candidate frames, recorded with the Svpro@120
amera, with one (a), two (b) and three (c) transition frames. Traces from the
revious image (with number 83) are visible (enlarged binary threshold image
elow) if the number of transition frames is insufficient (a, b).

ince the frame drop rate is particularly high, the adaptive ap-
roach loses speed by adjusting the wait frame count repeatedly.
hese adjustments also lead to a high rate of failures which man-
fest themselves as a high rate of image repetitions, for example
EC@60/Svpro@120 with 1 transition frame: 122.22 image pro-
ection tasks for originally 100 payload images. In more than 11%
f images, the wait frames had to be adjusted either up (5.83%)
r down (5.94%). Fig. 12(a) visualizes the temporal course. The
verage number of wait frames fluctuates between 1 and 2 and
here is a generally high number of failures throughout all im-
ges. In contrast, Fig. 12(b) shows a clear convergence to 2 wait
rames with the Realsense@60 camera. Since the convergence
ndirectly depends on the camera frame rate, convergence slows
own with a lower frame rate (see Fig. 12(c)). To strip the initial
onvergence overhead from the time table, we included timings
ith an presumably optimal converged wait frame count (W0)

or each adaptive test run. In case the asymptote was not clearly
8

visible from the graph, we included the closest integer asymp-
totes. As expected, if convergence is achievable, the total average
duration decreases.

From thousands of test runs with the Realsense@30/@60
we could only identify a few dozens experiments with frame
drops. Interestingly, if a frame drop did occur, there were usu-
ally multiple drops in the test run. For most of the runs with
validation we cannot identify a deviation from the frame-drop-
less averages. This seems reasonable, as the validation methods
tolerate frame drops and chances are that the dropped frame
was not critical (e.g. during a transition frame). There are a few
exceptions, e.g., Epson@59/Realsense@30, 1 transition frame,
adaptive synchronization, 7 frame drops: n: 101, time: 16.149 s.
Compared to the frame-drop-less experiments (14.986 s), it con-
verged slower, only after 21 images (regular: 13 to 14), and only
to 6 wait frames, whereas many other runs converged lower
(4). These exceptions further back our assumption that sporadic
frame drops are correctly identified and processed by the syn-
chronization methods with validation, but may slow down the
pipeline.

6.3. Discussion

From our results we draw multiple lessons, the most impor-
tant one being: The best variant of marker-based synchronization
depends on the setup and the application itself. If a user does not
have any prior knowledge about the projector and camera hard-
ware but requires robust results, the adaptive synchronization
is a good all-rounder. In case the risk of slight color deviations
from a next image is bearable, the failure-marker synchronization
provides the best cost-benefit ratio. While we did not witness
such deviations in our tests, they are, in theory, possible and
might occur more easily with high-speed cameras. The worst-
case synchronization methods are more suited for applications
that do not allow for changing the order of the images but tolerate
the occasional failure, either by an invalid result (no validation) or
by skipping a result (invalidation of a candidate). The sequential
method remains the best option if changes in the order of images
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Fig. 12. Overview of the adaptive test runs with 1 transition frame (image index 0-based). Half-transparent areas depict the standard deviation. Note the different
scaling of the y-axis. (a) After the initial worst-case wait-frame setting (2), the number fluctuates between 1 and 2. (b) The optimal wait frame count converges to
2. (c) The slower the camera, the wider the excess frames window, the slower the convergence. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Table 2
NEC@60 statistics. valid.: if a validation was performed, W ∗: initial wait frame count, C: avg. percentage of wait frame count changes (increase/decrease), n: avg.

number of projection tasks, T : avg. test run duration, subscripts: number of configured transition frames.
NEC@60/Svpro@120

Strategy Val. W ∗ C1 ↑/ ↓ (%) n1 T1 (s) C2 ↑/ ↓ (%) n2 T2 (s) C3 ↑/ ↓ (%) n3 T3 (s)

Sequent. – – – 100.00 12.138 – 100.00 14.128 – 100.00 16.879
Worst C. ✗ 2 0.00/0.00 100.00 6.747 0.00/0.00 100.00 8.442 0.00/0.00 100.00 10.096
Worst C. ✓ 2 0.00/0.00 100.14 8.444 0.00/0.00 100.84 11.885 0.00/0.00 102.64 15.486
Adaptive ✓ 2 5.83/5.94 122.22 9.451 4.27/4.37 114.83 13.042 2.91/2.92 110.59 16.545
Adaptive ✓ 1 6.29/5.63 124.26 9.523 4.97/4.16 117.46 13.277 3.60/2.53 112.97 17.034
Fail. M. ✓F 2 0.55/1.38 103.69 7.125 2.70/3.53 111.95 9.387 1.11/2.07 104.74 10.654

NEC@60/Realsense@60

Strategy Val. W ∗ C1 ↑/ ↓ (%) n1 T1 (s) C2 ↑/ ↓ (%) n2 T2 (s) C3 ↑/ ↓ (%) n3 T3 (s)

Sequent. – – – 100.00 11.364 – 100.00 13.280 – 100.00 14.840
Worst C. ✗ 3 0.00/0.00 100.00 8.528 0.00/0.00 100.00 10.137 0.00/0.00 100.00 11.882
Worst C. ✓ 4 0.00/0.00 100.17 12.060 0.00/0.00 100.14 15.152 0.00/0.00 100.42 18.707
Adaptive ✓ 4 1.85/2.76 110.07 9.614 0.16/1.15 101.08 12.512 0.02/1.01 100.30 15.742
Adaptive ✓ 2 2.22/2.23 111.81 9.222 0.18/0.17 101.27 12.157 0.05/0.04 100.46 15.251
Fail. M. ✓F 3 0.50/1.48 101.76 7.291 0.30/1.28 101.49 9.041 0.03/1.02 100.82 10.615

NEC@60/Realsense@30

Strategy Val. W ∗ C1 ↑/ ↓ (%) n1 T1 (s) C2 ↑/ ↓ (%) n2 T2 (s) C3 ↑/ ↓ (%) n3 T3 (s)

Sequent. – – – 100.00 15.560 – 100.00 16.758 – 100.00 18.984
Worst C. ✗ 6 0.00/0.00 100.00 13.456 0.00/0.00 100.00 15.127 0.00/0.00 100.00 16.776
Worst C. ✓ 8 0.00/0.00 100.19 18.508 0.00/0.00 100.24 21.868 0.00/0.00 100.15 25.186
Adaptive ✓ 8 2.09/2.46 107.47 15.042 2.34/2.57 108.68 19.150 0.35/1.26 101.38 22.521
Adaptive ✓ 6 2.44/1.76 108.70 14.631 2.62/1.85 109.69 18.704 0.58/0.41 102.14 21.976
Adaptive ✓ 5 2.23/1.27 108.71 14.193 2.67/1.38 110.81 18.252 0.96/0.48 103.88 20.825
Adaptive ✓ 4 3.53/1.39 113.63 14.460 4.31/1.76 117.50 19.050 1.84/0.45 106.82 21.292
Fail. M. ✓F 6 0.72/1.63 103.10 12.486 0.00/1.00 100.06 15.670 0.94/1.53 102.97 16.109
are not allowed and the results must be robust. In case of excep-
tionally low latencies in the setup or a slow camera and high LC
response time, the sequential method usually outperforms other
techniques.

The synchronization performance is directly tied to the pro-
ector and camera frame rate and (at least for color-correctness)
he LC response time. Additionally, the utilized marker detection
lgorithm must process the incoming camera photos faster than
ew photos are delivered, e.g., by defining a region of interest.
or applications that expect a real-time synchronized-camera-
mage input stream, it is necessary to employ hardware that
s fast enough to compensate for the synchronization overhead
9

(e.g., 270 FPS devices for an approx. 60 FPS stream with failure-
marker synchronization). As of today, the required speed might
not be achievable yet with LCD technology. In such cases, there
is a trade-off between color-correctness and performance.

7. Limitations

We have designed our synchronization to be widely applica-
ble. Our only two technical prerequisites are that camera frames
arrive in their correct order (frame drops are allowed) and that
the frame rates of projector and camera are known (usually
provided by the operating system) to determine the initial wait
frame count. Though, we expect our adaptive algorithm to handle
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rongly assumed frame rates as well, since the validation process
djusts the wait frame count automatically to match a different
rame rate.

Our greatest limitation is the embedded marker. The marker
ust be visible for the camera, which implies that it is also visible

or any other spectator apart from the camera, which may impair
he projection immersion. The problem is solvable if projector and
amera communicate via a wavelength invisible to humans. For
xample, if the projector is equipped with an internally synced
nfrared (IR) projector and the camera equally features IR vision
oo, the marker can be embedded in the IR image only.

Furthermore, depending on the marker, it may also restrict the
rojection surface. For an ArUco marker to be robustly detectable,
he surface should be as planar and tilted towards the camera
s possible. However, the restriction is only imposed on the area
f the projector image where the markers are embedded. For a
tructured-light scan of a three-dimensional object, for example,
small box can be included into the scene where only the
arkers are projected.
The marker must also be identifiable by a robust detector. Our

lgorithms are designed to tolerate false-negatives (wrongfully
ot detecting an existing marker), which are mostly handled
ike camera frame drops. However false-positives (wrongfully
etecting a marker that is not there) would quickly break the
ynchronization.
Finally, we have demonstrated that the LC response time is

n issue for color-correct photos of the projection, since the
ime may exceed a single projector frame. Though, we must
urrently rely on the user to configure the correct number of
ransition frames. This makes the problem tangible for a user,
ince no exact time measurement must be entered but only a
ough approximation in projector frame units. However, even if
n exact time measurement was known, the marker detection
ependency limits our algorithms’ reaction times to multiples
f projector frames, which may waste time in the future, when
ransition times might be significantly faster than the projector’s
rame rate.

. Conclusion

We have presented multiple marker-based algorithms to syn-
hronize a projector and camera. Depending on the application’s
eeds and the setup, either speed or robustness can be favored.
he adaptive strategy is a compromise of both, providing robust
esults, while estimating the best performance possible. Our algo-
ithms are specifically designed for LCD projectors, although we
ssume that they are adjustable towards other kinds of projectors
oo, e.g., DLP projectors, by reducing or omitting the transition
rames. However, other additional prerequisites may apply in
hat case, e.g., the camera’s frame rate being a multiple of the
LP projector’s color wheel rotation frequency to avoid rainbow
ffects.
For future work, we see the need of automating the decision-

aking on the required number of transition frames, e.g., by
stablishing a mathematical model of the projector’s LC response
ime [22].
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