
ar
X

iv
:2

50
5.

19
86

3v
1

 [
cs

.C
V

]
 2

6
M

ay
 2

02
5

FruitNeRF++: A Generalized Multi-Fruit Counting Method Utilizing
Contrastive Learning and Neural Radiance Fields

Lukas Meyer, Andrei-Timotei Ardelean, Tim Weyrich, and Marc Stamminger

Fig. 1: Rendering of RGB, semantic and instance images. For visualization of the results visit the project page: meyerls.github.io/fruit_nerfpp.

Abstract— We introduce FruitNeRF++, a novel fruit-counting
approach that combines contrastive learning with neural radi-
ance fields to count fruits from unstructured input photographs
of orchards. Our work is based on FruitNeRF [6], which employs
a neural semantic field combined with a fruit-specific clustering
approach. The requirement for adaptation for each fruit type
limits the applicability of the method, and makes it difficult to use
in practice. To lift this limitation, we design a shape-agnostic
multi-fruit counting framework, that complements the RGB
and semantic data with instance masks predicted by a vision
foundation model. The masks are used to encode the identity
of each fruit as instance embeddings into a neural instance
field. By volumetrically sampling the neural fields, we extract a
point cloud embedded with the instance features, which can be
clustered in a fruit-agnostic manner to obtain the fruit count.
We evaluate our approach using a synthetic dataset containing
apples, plums, lemons, pears, peaches, and mangoes, as well as
a real-world benchmark apple dataset. Our results demonstrate
that FruitNeRF++ is easier to control and compares favorably
to other state-of-the-art methods.

I. Introduction
Counting fruits and estimating yield is a valuable tool for

effective harvest and post-harvest management [1]. These
tasks include planning the harvest workforce, packaging and
wrapping, as well as storage and processing. A versatile multi-
fruit counting framework is essential to ensure applicability
across different types of orchards. Most existing frameworks
are optimized for specific fruit types [2], [3], [4], [5], leaving

∗The authors are with the Visual Computing Erlangen (VCE),
Friedrich-Alexander-Universität Erlangen-Nürnberg-Fürth, Germany,
E-Mail: [lukas.meyer, timotei.ardelean, tim.weyrich,
marc.stamminger]@fau.de

†This project is funded by the 5G innovation program of the German Fed-
eral Ministry for Digital and Transport under the funding code 165GU103B
and the European Union’s Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie grant agreement No 956585. The authors
gratefully acknowledge the scientific support and HPC resources provided by
the Erlangen National High Performance Computing Center (NHR@FAU) of
the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The hardware
is funded by the German Research Foundation (DFG).

a gap in solutions that can handle diverse fruit varieties. To
address this, we introduce a multi-fruit counting framework
that unifies the detection process using a visual foundation
model and generalizes object counting to accommodate
varying shapes and appearances.

FruitNeRF [6] introduced a fruit-counting framework
composed of two stages: one that is fruit-agnostic, and one
that is fruit-specific. The generic component leverages a neural
semantic field to integrate RGB and semantic modalities in a
3D space. The second component generates a semantic point
cloud from the NeRF, focused exclusively on fruit data, and
applies a cascaded clustering technique to accurately count
the fruits. However, the cascaded point clustering method
employed by FruitNeRF presents a key limitation: it relies
on fruit-specific shape priors, restricting its applicability to
generalized multi-fruit counting. To address this limitation,
we propose FruitNeRF++, overcoming this issue by encoding
instance-level information into a neural instance field using
contrastive learning. This allows us to extract an instance-
embedded point cloud from the neural field, which can be
clustered in a shape-agnostic manner. Preliminary experiments
demonstrate that this approach extends beyond fruit counting
and is even applicable to more general object types.

The main contributions of our work are:
• We propose a novel multi-fruit, counting method that is

shape-agnostic, by employing a neural instance field.
• We extend a multi fruit dataset1 [6] with instance masks.
• We release the code of FruitNeRF++2 upon acceptance.

II. Related Work
A. Fruit Counting

With the rise of computer vision in agriculture, fruit
counting in various orchard environments has garnered

1Project website: meyerls.github.io/fruit_nerfpp
2FruitNeRF++ code: github.com/meyerls/FruitNeRFpp

https://meyerls.github.io/fruit_nerfpp
https://meyerls.github.io/fruit_nerfpp
https://github.com/meyerls/FruitNeRFpp
https://arxiv.org/abs/2505.19863v1

attention across multiple disciplines, including precision
agriculture. Most research focuses on fruit types such as
sweet peppers [7], strawberries [8], [9], apples [5], [3], [2],
[11] and mangoes [4].

Liu et al. [4] propose a fruit counting system that processes
image sequences. During the detection phase, a convolutional
neural network is used to detect mangoes. In the tracking
phase, a Kalman Filter, paired with an optical flow tracker, is
applied to track individual fruits over time. The final count
is achieved by triangulating the tracked fruit instances and
localizing them in 3D space. Häni et al. [5] utilize a U-Net
architecture [10] to predict segmentation masks for apples.
These masks are projected into 3D to form a semantic point
cloud. The fruit count is then obtained by clustering the
point cloud and projecting the resulting clusters back onto
the image plane. Similarly to Häni et al. [5] the approach
of Gené-Mola et al. [2] uses instance segmentation masks.
By clustering the semantic point cloud and projecting it back
onto the image plane, they assign each 3D cluster a fruit id
through overlap with the instance masks. FruitNeRF [6] is
the first approach to work on different fruit types leveraging
neural radiance fields and visual foundation models. By lifting
the RGB and semantic images to 3D, a semantic point cloud
is extracted. Clustering the semantic point cloud combined
with fruit-specific templates leads to a fruit count.

B. Contrastive Learning
One of the prominent approaches for self-supervised

learning of representations and dimensionality reduction is to
employ a constrastive objective [12]. The essence of this class
of methods is to use positive (similar) and negative (dissimilar)
pairs of items as supervision. In general, these are significantly
easier to obtain compared to exhaustive labels, and can
sometimes be derived from simple priors, such as image
augmentations when learning visual representations [13].
Thanks to the versatility of the concept, contrastive learning
has been used in various contexts such as: unsupervised image
classification [13], semantic segmentation [14], anomaly
detection [15], anomaly clustering [16], or learning audio
representations [17]. The various methods adopt different
contrastive loss functions; some of the most common include
the hard margin contrastive loss [12], triplet loss [18],
ArcFace [19], and NT-Xent [20].

Our method adapts the InfoNCE loss [21] to leverage
multiple positive and negative pairs, which are mined from 2D
instance segmentation masks. The contrastive objective guides
the training of our neural instance field through volumetric
rendering, yielding a 3D-consistent instance field. Most related
to our work is the use of contrastive learning for optimizing a
3D representation [22], discussed in the following subsection.

C. Neural Panoptic Fields
Since the introduction of neural radiance fields

(NeRFs) [23] numerous advances have been made mainly
focusing on the improvement of quality [25], inference [26],
[27] and training time [28], [29]. Additionally NeRFs have
been extended by both a semantic [30] and instance [31]

field component. SemanticNeRF [30] extends the default
architecture by a semantic field to jointly optimize for
semantics with rgb and density. Thus, they obtain a multi-
view-consistent rendering of the assigned semantic classes.
InstanceNeRF [31] uses instance masks that are already view-
consistent; this enables the instance id of every object to be
learned directly through an underlying instance field.

Panoptic Lifting [32] and Contrastive Lift [22] address
a similar problem to ours, in that the methods seek to
reconstruct a 3D panoptic/instance field from 2D masks. In
Panoptic Lifting, the predicted 2D instances are not 3D-
consistent; to solve this inconsistency, the method computes
injective mappings from 2D instances to 3D surrogate
identifiers by solving linear assignment problems. However,
the mappings have to be computed repeatedly, imposing a
large computational cost. Contrastive Lift avoids an explicit
mapping by employing a constrastive objective to learn a field
of instance embeddings. Here, the authors render the feature
embeddings and utilize the 2D instance masks to coalesce
similar and penalize dissimilar features. To improve the
robustness of the method, the authors introduce an additional
concentration loss and use a slow teacher for training the
instance field. We also use contrastive learning to optimize a
field of instance embeddings; however, we use a different loss
function that avoids the overhead of maintaining two different
(teacher and student) networks. Moreover, our approach is
tailored for small objects, which are generally difficult to
model. This is done by adjusting the pixel sampling (Sec.
IV-C.3) to focus on the pairs that are hard to distinguish.

III. Preliminaries
As our method builds on FruitNeRF [6], we summarize

here the relevant components. FruitNeRF consists of a 3D
representation that models the geometry and semantics, and an
elaborate clustering algorithm that identifies individual fruits.
To represent the geometry, a NeRF [23] is used, which is a
neural representation that implicitly encodes a scene through
a continuous function F . Given a set of images and their
camera parameters, a neural network is optimized to learn
geometric and appearance properties of the scene. This is
achieved by optimizing a density field F𝜎: x → 𝜎 that maps
a spatial coordinate x ∈ R3 to a volume density 𝜎. To obtain
the RGB radiance c, the appearance field F𝑐 : (x,d) → c
takes the position x and view direction d as input. The
composed color of a pixel is determined by marching along a
camera ray r(𝑡) = o + 𝑡d that originates in the camera center
o. The estimated color Ĉ is obtained through volumetric
rendering by querying F in 𝐾 points along the ray r and
accumulating the color values based on the density:

Ĉ (r) =
𝐾∑︁
𝑘=1

𝑇 (𝑡𝑘)𝛼(𝜎(𝑡𝑘)𝛿𝑘)c(𝑡𝑘),

where 𝑇 (𝑡𝑘) = exp

(
−
𝑘−1∑︁
𝑎=1

𝜎(𝑡𝑎)𝛿𝑎

)
.

(1)

Here 𝛿𝑘 = 𝑡𝑘+1 − 𝑡𝑘 defines the distance between two adjacent
points and the transmittance probability is given by 𝛼(𝑥) =

Fig. 2: Pipeline of FruitNeRF++. For the images we recover both intrinsic and extrinsic camera parameters. We then extract semantic and
instance masks for arbitrary fruit types using SAM [39] and Detic [41]. The data are used to train a neural radiance field with an neural
appearance, semantic (fruit) and instance field. By clustering the combination of a fruit and instance point cloud we obtain a precise fruit
count.

1 − exp(−𝑥). An illustrative RGB rendering of a fruit tree is
visualized in Fig. 1 on the left.

Additionally, FruitNeRF [6] extends the NeRF approach by
a neural semantic field [30] to lift 2D semantic information
into 3D. Along with the color, a semantic field F𝑠: x → 𝑠 ∈ R
is introduced, which maps a spatial coordinate to a semantic
value. The estimation of the semantic Ŝ for a given pixel
is computed similarly to Ĉ (r), but instead of colors c(𝑡𝑘),
semantics s(𝑡𝑘) are accumulated according to

Ŝ (r) =
𝐾∑︁
𝑘=1

𝑇 (𝑡𝑘)𝛼(𝜎(𝑡𝑘)𝛿𝑘)𝑠(𝑡𝑘) . (2)

The semantics rendering is depicted in Fig. 1 in the middle. By
volumetric sampling of the implicit neural fields a point cloud
is obtained that contains semantic points with a high density.
Such semantic point cloud is referred to as a fruit point
cloud. Afterwards, a cascaded clustering approach is applied
in FruitNeRF, isolating each fruit to obtain a fruit count.
FruitNeRF uses a fruit-specific template matching approach
to subdivide clusters. The limitation of the clustering approach
is that it needs fruit-templates for different type of fruit and
varying template sizes for different grow stages.

To avoid this need for fruit-specific templates, we introduce
with FruitNeRF++ the concept of neural instance fields to
not only learn semantics but also an instance identifier for
each fruit in the scene. This allows us to combine semantic
and instance information in the clustering stage and forego
the template matching.

IV. FruitNeRF++
In this chapter we introduce the individual components of

the FruitNeRF++ pipeline, which is visualized in Fig. 2.

A. Data Preparation
Both our synthetic and real-world datasets consist of sets

of unordered RGB images. The synthetic dataset incorporates
the models from FruitNeRF, consisting of different fruit trees
[33]: apple, plum, lemon, pear, peach, and mango. For each

tree model, we render 300 images from the upper hemisphere
and extract the extrinsic and intrinsic camera parameters using
the BlenderNeRF plugin [34]. In addition to rendering color
and semantic images, we extend the dataset by additionally
rendering the ground-truth instance masks of the fruits. A
visualization of the dataset is shown on the project website.

The FUJI [35] dataset consists of 582 images taken from
12 trees at a commercial apple orchard. To recover the camera
poses, we applied COLMAP [36] to each side and manually
registered both sides. The semantic and instance masks were
generated using the visual foundation models Grounded-SAM
[37], [38], [39] and Detic [41]. All images for training were
downsampled to a resolution of 1296 px × 864 px.

B. Fruit Segmentation
To achieve a unified fruit counting approach we utilize

Grounded-SAM [37] and Detic [41] to predict precise instance
segmentation masks without training a custom model. Both
foundation models have the capability to generalize well to
different types of fruit without the need for fine-tuning.

Grounded-SAM uses the name of each fruit as a text prompt,
except for the fruit mango and plum, where we added apple
to the prompt due to poor masks with mango or plum only.
Grounded-SAM [37] combines the open-set object detector
Grounding DINO [38] with the open-world segmentation
model SAM [39]. For SAM [39] we use the weights of SAM-
HQ [40].

Grounding DINO generates precise bounding boxes for
each image by leveraging textual information as an input
condition. These bounding boxes are then used by SAM as
box prompts to predict accurate instance masks.

As Detic [41] can detect every class available in the
vocabulary collection LVIS (Large Vocabulary Instance Seg-
mentation) [42] Detic [41] combines both the identification of
bounding boxes and the assignment of categories to objects.
For Detic we choose the default network configuration and
selected LVIS (Large Vocabulary Instance Segmentation)
[42] as a vocabulary collection. For each detected bounding

TABLE I: Segmentation evaluation of Grounded-SAM [37] and
Detic [41] on synthetic data using Intersection over Union (IoU).
For Grounded-SAM we used each fruit as a text prompt. For Detic
we took an array of multiple fruit classes present in the LVIS [42]
Vocabulary and applied it to all fruit images. Listed tags: apple,
apricot orange_(fruit), peach, persimmon,
mandarin_orange, pear, banana, mango, lemon,
pumpkin, plum, grape, cherry, blackberry,
fig_(fruit), blueberry, pinecone, raspberry,
date_(fruit), almond, lime, clementine. The best
performing segmentation model is highlighted in green.

IoU (↑) Grounded-SAM Prompt Detic Classes
apple 0.659 apple 0.632

see
caption

pear 0.519 pear 0.468
plum 0.382 plum, apple 0.144
lemon 0.556 lemon 0.514
peach 0.662 peach 0.654
mango 0.588 mango, apple 0.528

box, Detic computes a CLIP [43] embedding vector and
uses it to estimate a corresponding text label. By leveraging
CLIP embeddings, Detic can predict object categories without
having seen them during training. we select every fruit-related
classes available in LVIS and filter the predictions in a post-
processing step.

On average the masks predicted of Grounded-SAM and
Detic over all synthetic data have an intersection over Union
(IoU) of 0.561 and 0.49, respectively. A detailed overview for
different fruits is listed in Tab. I. However, both approaches
face the issue that when a fruit is partially occluded by an
obstacle, such as a leaf or branch, it may be detected as
two separate instances. This leads to the feature space of a
fruit being partially separated and incorrectly counted as two
separate instances in the clustering phase.

C. Neural Instance Field

In this section we describe the key components of Fruit-
NeRF++: the neural instance field (Sec. IV-C.1), the proposed
contrastive loss function (Sec. IV-C.2), the pixel sampler
strategy (Sec. IV-C.3), and the training process (IV-C.4).

1) Instance Rendering: Similarly to Contrastive Lift [22],
the aim of the instance field is to lift view-inconsistent 2D
instance masks to 3D. Therefore, we optimize the 3D instance
embeddings through contrastive learning using 2D instance
masks predicted by a foundation visual model. Our approach
makes important modifications targeted to fruit-counting, by
improving the separation of small objects, which is described
in the next section.

The instance field F𝑖: x → i maps 3D coordinates x to
feature embeddings i ∈ R𝐷 . The goal of the instance field is to
map points that belong to the same fruit to similar embeddings,
while keeping embeddings from different fruits separated.
Thus the instance embedding acts as a fruit identifier. The
rendering of the instance field uses the same approach as
Bhalgat et al. [22]:

Î (r) =
𝐾∑︁
𝑘=1

𝑇 (𝑡𝑘)𝛼(𝜎(𝑡𝑘)𝛿𝑘)i(𝑡𝑘) . (3)

An instance rendering after clustering (see more regarding
our clustering approach in Sec. IV-E) is visualized in Fig. 1
on the right.

2) Contrastive Loss Function: We extend the base network
by a semantic (also referred as Fruit) and instance field. An
overview of the FruitNeRF++ architecture is schematically
illustrated in Fig. 3. For training the density and appearance
field we use the original photometric loss proposed by
Mildenhall et al. [23]. It computes the loss between the
ground truth pixel’s RGB value C (r) and the predicted color
value Ĉ (r) along each ray r as

LPhoto =
1
|R |

∑︁
r∈R

| |C (r) − Ĉ (r) | |22 . (4)

Here R is defined as the set of all rays. For optimizing the
semantic field, the loss has to distinguish between the two
classes: background and fruit pixels. Therefore, we employ a
binary cross entropy loss:

LSem=
1
|R |

∑︁
r∈R

𝑝(r) log 𝑝(r)+ (1−𝑝(r)) log(1−𝑝(r)). (5)

To train the instance field, we adapt the InfoNCE loss from
MoCo [24]:

L𝑞 = − log
exp(⟨q, q+⟩/𝜏)∑

q−∈𝑄 exp(⟨q, q−⟩/𝜏) + exp(⟨q, q+⟩/𝜏)
, (6)

where 𝜏 represents the temperature of the softmax, q+
represents a positive pair with q, and the denominator sums
over all negative samples (q−) and one positive sample, q+.

In contrast, we have readily available multiple positive
pairs for each sampled pixel, i.e., all pixels belonging to
the same 2D instance. We find that a naive implementation,
where each pair of pixels in one fruit is contrasted against

Fig. 3: Overview of the FruitNeRF++ architecture, split up into
four different components: density field, appearance field, fruit field,
and instance field. The density field encodes the volume density 𝜎,
the appearance field the color RGB, the Fruit Field the semantic
information about the fruit in space, and the instance field a feature
vector i encoding information about the instance group of a point in
space. The dashed arrow indicates the flow direction of the gradient.
For training the different fields we employed a cascaded training
scheme. First we train the density and RGB alone, followed by
activating the semantic Fruit Field. Lastly, we freeze all three neural
fields and train only the instance field. The figure is adapted from
Özer et al. [44]. The colors of the dashed arrows correspond to their
individual loss function in Eq. 8

all pixels from all other fruits, is suboptimal. Instead, we
compute a fruit-prototype feature vector F𝑎, as the average
of the features selected for that fruit: F𝑎 = 1

𝑃

∑
P(𝑥 𝑗)=𝑎 i(𝑥 𝑗),

where P(x) is the fruit to which a point x belongs. For each
pixel, we treat the fruit-prototype feature as the positive pair,
and the prototypes of all other fruits as negative pairs. Thus,
our contrastive loss is:

Lcontr = −
𝐺×𝐿×𝑃∑︁
𝑗=1

log
exp(⟨i(𝑥 𝑗), 𝐹P(𝑥 𝑗)⟩/𝜏)∑𝐺×(𝐿+1)
𝑎=1 exp(⟨i(𝑥 𝑗), 𝐹𝑎⟩/𝜏)

. (7)

where 𝐺, 𝐿, and 𝑃 represent the number of groups, the
number of fruits per group, and the number of pixels per
fruit respectively; sampled as discussed in IV-C.3. The final
training loss is finally given by:

L = LPhoto + 𝜆SemLSem + 𝜆contrLcontr . (8)

The weighting factors 𝜆Sem and 𝜆contr are set to 1, and we
prevent both gradients to propagate trough the density field.

3) Pixel Sampling Strategies: We observe that the uniform
pixel sampling, customarily employed when training radiance
fields, is inefficient in providing the training signal for
the instance fields. That is because the large number of
background pixels overshadows the small gradient updates
needed to distinguish between different fruits. Therefore, we
design specific pixel samplers for training different fields,
tailoring the optimization process for the fruit-centric tasks.

The purpose of the RGB and semantics pixel sampler is
to provide uniform coverage of all data to train the density,
appearance (RGB) and semantic fields. Therefore, we keep
here the default method used in Nerfstudio [45], which
uniformly samples pixels across all available images.

The training of the instance field in FruitNeRF++ is
performed on a per-image basis, as the contrastive learning
approach requires positive and negative pairs, which are only
available within each image. The task of the instance pixel
sampler is to form the pixel pairs for training, as visualized
in Fig. 4. To obtain positive pairs, we use the 2D instance
mask to select multiple points from a single fruit, which are
optimized to have similar instance embeddings. By repeating
the process above, we obtain groups of positive pairs. In
turn, by matching pixels from different groups we obtain
negative pairs which are optimized to be distinct through our
contrastive loss (Eq. 7). Since it is harder to separate fruits
that are (spatially) closer, we improve the training signal for
such cases by mining local negatives (hard pairs). To obtain
these pairs, for each fruit we select 𝐿 − 1 nearest neighbours
(in terms of distance between the 2D instance masks), and
then sample 𝑃 pixels per fruit. We generate 𝐺 such groups of
fruits, which provide hard (local) negatives (Fig. 4, right) and
use all pairs formed from different groups as global negatives
(Fig. 4 on the left).

4) Cascaded Training: The training of the semantic and
instance fields is unstable if the representation of density in
the neural field is poor. Therefore, we use a cascaded training
method, by optimizing at first only the density and appearance
fields. Then, the semantic field is added and trained jointly.

(a) Concept of Global and
Local Negatives

(b) Illustration of
Group Pixel Sampling

Fig. 4: In Fig. (a) we visualize the concept of local and global
negatives. Local negatives are a collection of multiple fruits in near
vicinity (see Sec. IV-C.3). By selecting these hard negatives, we
enforce the features of neighbouring fruits to be distinct, facilitating
their separation during the clustering stage. Global (weak) negatives
are then used to separate distant fruits. Fig (b) visualizes both
pixel sampling and local negatives in detail. The pixels from the
orange center are denoted as positive and all others as negative. By
computing the contrastive loss function between every pixel’s feature
vector and the mean feature vector, we attract positive (yellow pixels)
and repulse negative features (pink pixels).

Finally, we freeze the appearance and semantic fields and
train only the instance field; the other parts of the network
are frozen, as the instance pixel sampler may otherwise cause
catastrophic forgetting.

D. Point Cloud Export
FruitNeRF++ gathers information about density, semantics,

and instance segmentation within its different neural radiance
fields. To export a point cloud after training, we effectively
sample each field in the pipeline by uniformly sampling the
space of our scene. This volumetric sampling is achieved
by querying the network with every spatial point to extract
relevant information.

The density field provides precise details about a point’s
geometric significance, the appearance field captures its color
composition, the fruit field indicates the presence of a fruit,
and the instance field reveals the implicit affiliation to a
specific fruit id. Since the density field contains information
about the physical properties of the tree, and the semantic
field identifies whether a point belongs to a fruit, we can
combine both point clouds to obtain a fruit point cloud.

The instance point cloud, derived from sampling the
instance field, includes a 𝐷-dimensional feature vector for
each point, encoding the fruit instance. By combining the
fruit point cloud with the instance point cloud, we create a
point cloud that represents only the fruits, along with their
corresponding 𝐷-dimensional feature vectors.

E. Fruit Counting via Multi-Modal Clustering
Our fruit-counting approach is radically different from

the clustering concept used in FruitNeRF [6]. There, a
cascaded clustering procedure is employed by separating
first conglomerates of fruits from single fruits. Then, the
conglomerates of fruits are subdivided and counted using

TABLE II: Fruit counting results on different fruit types with different models. The synthetic data have an image size of 1024 px ×
1024 px and contain of 300 frames. Masks generated by Grounded-SAM [37] have the corresponding fruit type as input. Only for plum
we set the text prompt to ‘apple‘ & ‘plum‘ and for mangoes to ‘apple‘. As Detic [41] classifies every object in the image, we select all
available fruit classes. The results refer to counting result and are obtained if the center of a fruit is close to the GT center. The best
performing methods on each fruit is highlighted in green. ∗: results are taken from FruitNeRF [6].

FruitNeRF FruitNeRF++
GT Mask GT Mask

Fruit Type Count∗ Precision∗ (↑) Recall∗ (↑) F1-Score∗ (↑) Count Precision (↑) Recall (↑) F1-Score (↑)

Apple 283/283 1 1 1 285/283 0.993 1 0.996
Plum 642/745 0.973 0.812 0.885 572/745 0.989 0.759 0.859
Lemon 321/326 0.993 0.963 0.978 312/326 1 0.957 0.978
Pear 237/250 1 0.944 0.971 252/250 0.992 1 0.996
Peach 148/152 1 0.973 0.987 153/152 0.993 1 0.996
Mango 929/1150 0.978 0.788 0.873 649/1150 0.988 0.557 0.713

FruitNeRF++
SAM Mask Detic Mask

Fruit Type Count Precision (↑) Recall (↑) F1-Score (↑) Count Precision (↑) Recall (↑) F1-Score (↑)

Apple 283/283 0.996 0.996 0.996 284/283 0.996 1 0.998
Plum 254/745 1 0.341 0.509 137/745 1 0.184 0.311
Lemon 307/326 0.997 0.938 0.967 274/326 0.993 0.834 0.907
Pear 236/250 0.995 0.94 0.967 233/250 1 0.932 0.965
Peach 152/152 0.993 0.993 0.993 150/152 0.987 0.974 0.98
Mango 457/1150 0.987 0.392 0.561 324/1150 0.997 0.281 0.438

another clustering step, based on a fruit-specific template.
However, a drawback of this method is that both stages
(DBSCAN [46] and agglomerative clustering [47]) require
several hyper-parameters, which heavily influence the results,
making the approach impractical for a multi-fruit counting
approach. In FruitNeRF++, we replace this procedure with
a simpler clustering approach that is divided into spatial
partitioning and multi-modal clustering.

1) Spatial Partitioning: Spatial partitioning uses 𝑘-Means
[47] to divide the existing Euclidean fruit point cloud into
𝑆 different partitions with similar point cloud size. The
value of 𝑆 is arbitrarily selected and simply aims to reduce
the number of points in the multi-feature clustering step,
enhancing computational efficiency.

2) Multi-Modal Clustering: The multi-feature clustering is
applied to all 𝑆 partitions independently. For each 𝑆, we cluster
the point cloud using HDBSCAN [48] with a custom distance
metric composed of an Euclidean and a cosine distance. That
is, given two points 𝑃𝑘 = (i𝑘 ,x𝑘) and 𝑃𝑙 = (i𝑙 ,x𝑙), our
metric computes the distance as follows:

𝑑𝑘𝑙 = 𝜆𝑐𝑑𝑐 (i𝑘 , i𝑙) + 𝜆𝑒𝑑𝑒 (x𝑘 ,x𝑙) . (9)

Here, i ∈ R𝐷 represents the feature embedding, and x the
3D position. 𝑑𝑐 is defined as the cosine distance: 𝑑𝑐 (a, b) =
1 − ⟨a,b⟩

∥a∥ ∥b∥ which measures the distance between two feature
vectors and is weighted by 𝜆𝑐 = 1. The Euclidean distance
𝑑𝑒 between two points is weighted by 𝜆𝑒 = 5. A detailed
evaluation of feasible 𝜆𝑒 is provided in Sec. V.

V. Evaluation and Results
We evaluate FruitNeRF++ on our synthetic dataset. We

used the same parameters for all experiments with an instance
embedding dimension of 𝐷 = 32, a temperature of 𝜏 = 0.2
and 𝜆𝑐 = 1 and 𝜆𝑒 = 1. In Tab. II the results show that our

approach outperforms FruitNeRF on most fruit types. Overall,
FruitNeRF++ with ground truth masks achieve an average
F1-score of 0.925 compared to Grounded-SAM-generated
masks at 0.832 and Detic masks at 0.776.

Secondly, we evaluate the impact of different feature
embedding sizes 𝐷, which define the space that encodes
the fruit identity. In this experiment we sweep from 𝐷 = 1
to 𝐷=256, set the temperature to 𝜏=0.2 and the weighting
parameters to 𝜆𝑒=0 and 𝜆𝑐 =1. In Fig. 5 on the left the results
for all three fruits are visualized. It can be seen that increasing
the feature dimension leads to an increase in F1-Score as
more fruit identities can be encoded. For apples, the F1-Score
converges to 1 at 𝐷=16, whereas for plums and mangoes the
maximum is reached with a larger feature embedding size.
The poor result for mangoes can be attributed to the large
amount of fruits and high occlusions inside the tree.

Our next experiment looks at the contrastive loss func-
tion and its temperature parameter 𝜏. A lower temperature
increases the penalty on the hardest negatives, leading to
more separation between local structures [49] and causes the
loss to concentrate on points in its vicinity. In contrast, a
higher (e.g. 𝜏→+∞) temperature reduces sensitivity to hard
negatives and gives all negative points the same magnitude
of penalties. A feasible 𝜏 aims for a reasonable distribution
which is locally clustered and globally separated. From Fig.
5, center, it is evident that the feasible region is between 0.1
and 0.3 and peaks at 0.2. In the edge cases, the clustering is
not able to properly separate the instance embeddings.

To investigate our custom clustering metric (Fig. 5, right),
we fixed 𝜆𝑐 = 1 and varied 𝜆𝑒 from 0 to 10. The case 𝜆𝑒=∞
indicates 𝜆𝑐 = 0 and 𝜆𝑒 = 1. The clustering performance
with only cosine distance is limited, yet increasing rapidly
when combined with the Euclidean component. Removing the
cosine component similarly results in a drop in performance.

1 2 4 6 8 16 32 64 128 192 256

0

0.2

0.4

0.6

0.8

1

Feature Embedding Size 𝐷

F1
-S

co
re

.0125 .025 .05 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Temperature 𝜏

F1
-S

co
re

0 1 2 3 4 5 6 7 8 9 10 ∞

0.5

0.6

0.7

0.8

0.9

1

𝜆𝑒

F1
-S

co
re Apple

Plum

Mangoes

Fuji-SAM

Fig. 5: Counting result on variation of the embedding size 𝐷 is depicted on the left. Temperature is set to 𝜏 = 0.2. 𝜆𝑒 = 0 and 𝜆𝑐 = 1 to
show the impact of the embedding size only. In the middle the sweep over temperature 𝜏 is shown. Here we set 𝜆𝑒 = 1 and 𝜆𝑐 = 1. On
the right shows the cluster performance via parameter sweep over 𝜆𝑒 while setting 𝜆𝑐 = 1. The red area describes the feasible area for
parameters 𝐷 and 𝜏.

The minor contribution of feature embeddings to the clustering
results (e.g. for apple) can be can be attributed to the fact
that for synthetic data clustered fruits occur rarely and thus
the main separation can be done in Euclidean space.

For the FUJI dataset, our method FruitNeRF++ obtains
an F1-Score of 0.765 using instance masks generated by
Grounded-SAM, an embedding size of 𝐷 = 32, temperature
𝜏 = 0.35 and 𝜆𝑒 = 5. We sampled 600k points and chose
𝑆 =40 partitions. The results of our generalized multi-fruit
approach compare well to the fruit-specific approach from
Gené-Mola et al. [2] with an F1-Score of 0.881. The results
of our counting algorithm compared to Gené-Mola et al. [2]
can be attributed to the noisy poses and manual registration
of both sides.

VI. Limitations
Our fruit counting method, FruitNeRF++, has limitations.

Training on larger scenes, like the Fuji dataset, takes about
8 hours on an Nvidia A5000 (24GB VRAM), making it
unsuitable for real-time use. The slow convergence of the
instance field accounts for more than half of the training time.
Additionally the results heavily depend on a good coverage of
the tree, and noisy data significantly decreases the correctness
of the implicit field and thus the counting result. This is mainly
due to inaccurate poses, which cause the embeddings of one
fruit to contaminate the neighbouring features. Lastly, the
instance segmentation tends to predict two different instances
if a leaf or branch visually separates a fruit; this causes the
feature embeddings of the two halves to be pulled apart.

As we claim to provide a generalized fruit counting
approach, challenges arise for fruits that grow in clusters,
such as bananas, berries, or dates. Further research is needed
to efficiently estimate cluster sizes and predict accurate cluster
counts.

VII. Conclusion & Outlook
We introduced FruitNeRF++, a novel method to count

fruits from view-inconsistent instance segmentation masks
using neural radiance fields. It encodes the instance identity
of each fruit implicitly in the neural field and allows a simple
clustering approach to obtain a fruit count. Compared to its
predecessor FruitNeRF, our approach is fully agnostic to the
type of fruit, regarding both the neural radiance field and the
clustering. This also applies to any type of object as it does

not need any object shape priors. In an additional experiment
with the Messy Rooms dataset dataset [22] that contains 100
common household objects, we detected 99 objects. For a
visualization visit our project website.

Recent work by Xu et al. [52] introduces a class-agnostic
object counting approach that requires only a class name to es-
timate object counts automatically. However, as this method is
currently designed for single 2D images, extending it to 3D or
multi-view images could be a promising direction, potentially
improving accuracy and robustness in fruit counting.

As a future direction for a NeRF-based counting approach,
it is necessary to reduce the computational complexity. Using
time-series images and incrementally building up the scene
with SLAM [50], Gaussian Splatting [51] or PAgNeRF
[7] could help achieve real-time performance. Additionally,
temporal information could simplify fruit ID association and
further reduce computation time.

Acknowledgement
We extend our gratitude to Adam Kalisz for his unique

Blender skills, Jann-Ole Henningson for proof reading
our script, Victoria Schmidt, and Annika Killer for their
invaluable assistance in evaluating the recorded apple trees.

References
[1] J. C. Miranda, J. Gené-Mola, M. Zude-Sasse, N. Tsoulias, A. Escolà, J.

Arnó, J. R. Rosell-Polo, R. Sanz-Cortiella, J. A. Martínez-Casasnovas
and E. Gregorio, "Fruit sizing using AI: A review of methods and
challenges," Postharvest Biology and Technology, 2023.

[2] J. Gené-Mola, R. Sanz-Cortiella, J. R. Rosell-Polo, J. R. Morros, J. Ruiz-
Hidalgo, V. Vilaplana and E. Gregorio, "Fruit detection and 3D location
using instance segmentation neural networks and structure-from-motion
photogrammetry," Computers and Electronics in Agriculture, 2020.

[3] X. Liu, S. W. Chen, S. Aditya, N. Sivakumar, S. Dcunha, C. Qu, C.
J. Taylor, J. Das and V. Kumar, "Robust Fruit Counting: Combining
Deep Learning, Tracking, and Structure from Motion," arXiv, 2018.

[4] X. Liu et al., "Monocular Camera Based Fruit Counting and Mapping
With Semantic Data Association," IEEE Robotics and Automation
Letters, vol. 4, pp. 2296-2303, 2019.

[5] N. Häni, P. Roy and V. Isler, "A comparative study of fruit detection
and counting methods for yield mapping in apple orchards," Journal
of Field Robotics, vol. 37, pp. 263–282, 2019.

[6] L. Meyer, A. Gilson, U. Schmidt and M. Stamminger, "FruitNeRF:
A Unified Neural Radiance Field based Fruit Counting Framework,"
arXiv, 2024.

[7] S. Claus, M. Halstead, P. Zimmer, T. Laebe, E. Guclu, C. Stachniss,
and C. McCool, "PAg-NeRF: Towards fast and efficient end-to-end
panoptic 3D representations for agricultural robotics," IEEE Robotics
and Automation Letters, 2023.

[8] A. Riccardi, S. Kelly, E. Marks, F. Magistri, T. Guadagnino, J. Behley,
M. Bennewitz, and C. Stachniss, "Fruit Tracking Over Time Using
High-Precision Point Clouds," Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2023.

[9] M. Sorour, P. J. From, K. Elgeneidy, S. Kanarachos, and M. Sallam,
"Compact Strawberry Harvesting Tube Employing Laser Cutter," in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2022.

[10] O. Ronneberger, P. Fischer and T. Brox, "U-Net: Convolutional Net-
works for Biomedical Image Segmentation," Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J.
Hornegger, vol. 9351, pp. 234–241, 2015.

[11] Y. Zhang, W. Zhang, J. Yu, L. He, J. Chen, and Y. He, "Complete
and accurate holly fruit counting using YOLOX object detection,"
Computers and Electronics in Agriculture, vol. 198, p. 107062, 2022.

[12] R. Hadsell, S. Chopra, and Y. LeCun, "Dimensionality Reduction
by Learning an Invariant Mapping," 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR),
2006.

[13] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, "A Simple
Framework for Contrastive Learning of Visual Representations,"
Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020.

[14] M. Hamilton, Z. Zhang, B. Hariharan, N. Snavely, and W. T. Freeman,
"Unsupervised Semantic Segmentation by Distilling Feature Corre-
spondences," International Conference on Learning Representations,
2022.

[15] C. Guille-Escuret, P. Rodriguez, D. Vazquez, I. Mitliagkas, and J. Mon-
teiro, "CADet: Fully Self-Supervised Out-Of-Distribution Detection
With Contrastive Learning," Advances in Neural Information Processing
Systems (NeurIPS), 2024.

[16] A.-T. Ardelean and T. Weyrich, "Blind Localization and Clustering of
Anomalies in Textures," Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2024.

[17] A. Saeed, D. Grangier, and N. Zeghidour, "Contrastive Learning of
General-Purpose Audio Representations," arXiv preprint, 2020.

[18] F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A Unified
Embedding for Face Recognition and Clustering," Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

[19] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, "ArcFace: Additive Angular
Margin Loss for Deep Face Recognition," 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[20] K. Sohn, "Improved Deep Metric Learning with Multi-class N-pair
Loss Objective," Advances in Neural Information Processing Systems
(NeurIPS), vol. 29, 2016.

[21] A. van den Oord, Y. Li, and O. Vinyals, "Representation Learning
with Contrastive Predictive Coding," arXiv, 2019.

[22] Y. Bhalgat, I. Laina, J. F. Henriques, A. Zisserman and A. Vedaldi,
"Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion," Proceedings of the Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[23] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi and R. Ng, "NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis," Commun. ACM, vol. 65, pp. 99–106, Jan. 2022.

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick.
"Momentum contrast for unsupervised visual representation learning."
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[25] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan and P. Hed-
man, "Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields,"
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2023.

[26] C. Reiser, S. Peng, Y. Liao and A. Geiger, "KiloNeRF: Speeding up
Neural Radiance Fields with Thousands of Tiny MLPs," CoRR, vol.
abs/2103.13744, 2021.

[27] A. Yu, R. Li, M. Tancik, H. Li, R. Ng and A. Kanazawa, "PlenOctrees
for Real-time Rendering of Neural Radiance Fields," Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
2021.

[28] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht and A.
Kanazawa, "Plenoxels: Radiance Fields without Neural Networks,"
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[29] T. Müller, A. Evans, C. Schied and A. Keller, "Instant Neural Graphics
Primitives with a Multiresolution Hash Encoding," ACM Transactions
on Graphics (TOG), vol. 41, no. 4, pp. 102:1–102:15, July 2022.

[30] S. Zhi, T. Laidlow, S. Leutenegger and A. J. Davison, "In-Place Scene
Labelling and Understanding with Implicit Scene Representation,"
CoRR, 2021.

[31] Y. Liu, B. Hu, J. Huang, Y.-W. Tai and C.-K. Tang, "Instance
Neural Radiance Field," Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2023.

[32] Y. Siddiqui, L. Porzi, S. R. Bulò, N. Müller, M. Nießner, A. Dai and
P. Kontschieder, "Panoptic Lifting for 3D Scene Understanding With
Neural Fields," Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

[33] XFrog Inc., LIBRARY: FRUIT TREES, 2020. [Online: https://
www.xfrog.com/product-page/library-fruit-trees]

[34] M. Raafat, "BlenderNeRF" (Version 5.0.0), 2023, [Computer software].
https://doi.org/10.5281/zenodo.7926211

[35] J. Gené-Mola, R. Sanz-Cortiella, J. R. Rosell-Polo, J. R. Morros,
J. Ruiz-Hidalgo, V. Vilaplana and E. Gregorio, "Fuji-SfM dataset: A
collection of annotated images and point clouds for Fuji apple detection
and location using structure-from-motion photogrammetry," Data in
Brief, vol. 30, 2020.

[36] J. L. Schönberger and J.-M. Frahm, "Structure-from-Motion Revisited,"
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[37] T. Ren et al., "Grounded SAM: Assembling Open-World Models for
Diverse Visual Tasks," arXiv, 2024.

[38] S. Liu et al., "Grounding DINO: Marrying DINO with Grounded
Pre-Training for Open-Set Object Detection," arXiv, 2024.

[39] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T.
Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár and R. Girshick,
"Segment Anything," arXiv, 2023.

[40] L. Ke, M. Ye, M. Danelljan, Y. Liu, Y.-W. Tai, C.-K. Tang, and F.
Yu, "Segment Anything in High Quality," Proceedings of the Neural
Information Processing Systems (NeurIPS), 2023.

[41] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl and I. Misra, "Detecting
Twenty-thousand Classes using Image-level Supervision," arXiv, 2022.

[42] A. Gupta, P. Dollár and R. Girshick, "LVIS: A Dataset for Large
Vocabulary Instance Segmentation," arXiv, 2019.

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
International Conference on Machine Learning (ICML), 2021.

[44] M. Özer, M. Weiherer, M. Hundhausen, and B. Egger, "Exploring Multi-
modal Neural Scene Representations With Applications on Thermal
Imaging," ArXiv, 2024.

[45] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang, A.
Kristoffersen, J. Austin, K. Salahi, A. Ahuja, D. McAllister, and A.
Kanazawa, "Nerfstudio: A Modular Framework for Neural Radiance
Field Development," ACM SIGGRAPH 2023 Conference, 2023.

[46] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise," in Knowledge Discovery and Data Mining, 1996.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot and É. Duchesnay,
"Scikit-learn: Machine Learning in Python," J. Mach. Learn. Res., vol.
12, pp. 2825–2830, 2011.

[48] R. J. G. B. Campello, D. Moulavi and J. Sander, "Density-Based
Clustering Based on Hierarchical Density Estimates," in Advances in
Knowledge Discovery and Data Mining, vol. 7819, pp. 160–172, 2013.

[49] F. Wang and H. Liu, "Understanding the Behaviour
of Contrastive Loss," arXiv, 2021. [Online]. Available:
https://arxiv.org/abs/2012.09740.

[50] A. Kalisz, et al., “B-SLAM-SIM: A Novel Approach to Evaluate
the Fusion of Visual SLAM and GPS by Example of Direct Sparse
Odometry and Blender,” VISIGRAPP, 2019.

[51] B. Kerbl, G. Kopanas, T. Leimkähler, and G. Drettakis, "3D Gaussian
Splatting for Real-Time Radiance Field Rendering," ACM Transactions
on Graphics, vol. 42, July 2023.

[52] J. Xu, H. Le, V. Nguyen, V. Ranjan, and D. Samaras, n"Zero-Shot
Object Counting," Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 15548–15557,
2023.

https://www.xfrog.com/product-page/library-fruit-trees
https://www.xfrog.com/product-page/library-fruit-trees
https://doi.org/10.5281/zenodo.7926211

	Introduction
	Related Work
	Fruit Counting
	Contrastive Learning
	Neural Panoptic Fields

	Preliminaries
	FruitNeRF++
	Data Preparation
	Fruit Segmentation
	Neural Instance Field
	Instance Rendering
	Contrastive Loss Function
	Pixel Sampling Strategies
	Cascaded Training

	Point Cloud Export
	Fruit Counting via Multi-Modal Clustering
	Spatial Partitioning
	Multi-Modal Clustering

	Evaluation and Results
	Limitations
	Conclusion & Outlook
	References

