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ABSTRACT Near-field multiple-input multiple-output (MIMO) radar systems allow for high-resolution
spatial imaging by leveraging multiple antennas to transmit and receive signals across multiple perspectives.
This capability is particularly advantageous in challenging environments, where optical imaging techniques
struggle. We present a novel approach to inverse rendering for near-field MIMO radar systems, aimed at
reconstructing material properties such as surface roughness, dielectric constants, and conductivity from
radar and ground-truth mesh data, for example obtained from multi-view stereo. Drawing inspiration from
physically based rendering techniques in computer graphics, we formalize an advanced inverse rendering
algorithm that integrates electromagnetic wave propagation models directly into the optimization process. To
avoid bias from conventional radar image reconstruction algorithms in the optimization process, we directly
derive gradients from raw radar outputs, resulting in more accurate material characterization. We validate
our approach through extensive experiments on both synthetic and real radar datasets, demonstrating its
effectiveness in a multitude of scenarios.

INDEX TERMS Backpropagation, MIMO radar, radar simulation, ray tracing, scattering parameters.

I. MOTIVATION
Near-field multiple-input multiple-output (MIMO) imaging
radar systems are capable of providing high-resolution spatial
data due to their ability to simultaneously transmit and receive
signals across multiple antennas and different perspectives.
This enables highly detailed imaging of objects close to the
radar, even in challenging environments with limited visibility
from occlusions, clutter, or adverse weather. Inverse rendering
in the context of near-field MIMO imaging radar is an im-
portant research direction due to its potential to significantly
enhance object recognition, scene reconstruction, and material
characterization. While traditional rendering techniques from
computer graphics aim to generate realistic images from 3D
models by simulating the physical behavior of light, inverse

rendering reverses this process and aims to extract 3D models,
material properties, or other scene characteristics from sensor
data.

Our goal is to combine domain-specific knowledge from
computer graphics with near-field MIMO imaging radar,
where we investigate the potential of inverse rendering to re-
construct detailed material properties. However, the process of
accurately reconstructing the material properties of an object
from radar data is inherently challenging due to the complex
nature of interactions between electromagnetic waves and the
scene, which includes scattering, diffraction, and multi-path
propagation, for example.

This paper derives a novel approach to inverse rendering
for near-field MIMO imaging radar, with the specific goal of
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reconstructing material properties such as surface roughness,
dielectric constants, and conductivity, in the form of complex
indices of refraction. We propose an advanced inverse ren-
dering algorithm inspired by physically based rendering from
computer graphics, which leverages the rich data provided
by MIMO imaging radars and their capacity to capture fine
spatial details. By incorporating different models for elec-
tromagnetic wave propagation into the optimization process
and directly deriving gradients from the raw outputs of a real
MIMO radar, we achieve robust optimizations which enable a
multitude of down-stream tasks. We validate and explore the
strengths and weaknesses of our proposed framework through
a series of experiments, both using synthetic and a diverse
dataset of real radar data, evaluating its effectiveness in re-
constructing material properties in various scenarios.

In summary, our contributions are:
� Formal derivation of an inverse rendering framework for

near-field MIMO imaging radar using ray tracing
� Transfer of domain-specific knowledge from computer

graphics and physically based rendering to radar simula-
tion

� Direct derivation of inverse rendering gradients from
raw radar outputs without bias from reconstruction al-
gorithms

� Comprehensive evaluation of the proposed inverse ren-
dering framework for near-field MIMO radar with the
goal of material parameter reconstruction

II. PREVIOUS WORKS
II.
1) IMAGING RADAR
Analogously to photo cameras, imaging radars produce 2D
images of their surroundings; however, while operating at
radio wavelengths instead of visible light. Synthetic an-
tenna aperture (SAR) imaging radars typically employ either
multiple-input and multiple-output (MIMO) channels from
multiple antennas at different positions [1], or rely on move-
ment of the antenna or the observed object, which creates a
virtually enlarged antenna aperture over time [2]. Elaborate
reconstruction algorithms use this additional information to
resolve radar data from multiple antennas or positions into one
high-resolution image [3], [4], [5]. Leveraging both optical
and radar data, Brinkmann et al. [6] proposed to estimate ma-
terial properties and perform material characterization from
measurements of a MIMO radar, which they then validate
using a quasi-optical setup. While pursuing similar goals, they
chose a more hardware-centric approach, whilst we rely on
inverse rendering and seek a mostly software-based solution
instead.

2) RADAR SIMULATION
The shooting and bouncing rays (SBR) [7] method is a proven
approach to radar simulation, which models wave propagation
using ray tracing and is additionally encouraged by hard-
ware support in modern GPUs. With the upswing of machine

learning and neural networks, radar simulation became an
important tool to generate large-scale datasets to satisfy the
need of data-driven approaches, such as deep learning. Yun
and Iskander [8] provide a comprehensive overview over the
basic principles of modeling radio wave propagation using
ray tracing. Ortiz-Jimenez et al. [9] explore the applicability
of microfacet scattering models from the realm of computer
graphics to a 3D high-resolution imaging radar for hidden
object detection at 300 GHz. In the context of autonomous
driving and advanced driver assistance systems (ADAS), radar
simulation on digital twins [10], [11] plays a crucial role to
explore the design space of different sensor types and their
applicability. Furthermore, Schüßler et al. [12] propose a radar
simulator for MIMO arrays for ADAS, where they rely on a
simplistic material model to both support diffuse and specular
reflection, which provides realistic radar imagery even for
large antenna arrays. They later extend their approach to allow
for automatic data annotation via ray meta data [13], such as
Doppler or hit geometry information, which enables advanced
data-driven applications which would otherwise be impossible
or too costly to realize on real data.

3) PHYSCIALLY BASED RENDERING
We recommend the excellent book by Pharr et al. [14], which
provides an extensive description of state-of-the-art rendering
techniques and algorithms. They cover both theory and im-
plementation by providing code examples and an open-source
implementation that runs on both CPU and GPU. Thus, we ab-
stain from an elaborate survey and refer the interested reader
to their work.

4) DIFFERENTIABLE RENDERING
Inverse, or differentiable, rendering receives increasing atten-
tion from the rendering community, enabled by differentiable
rendering primitives, such as rasterization [15], ray trac-
ing [16], or volumetric rendering [17]. This gave rise to a
multitude of applications, for example in the context of novel
view synthesis [18], [19], image-based rendering [20], and
multi-view reconstruction [21]. A valuable tool to differenti-
ate complex GPU-based rendering algorithms, or frameworks
with a large codebase, is compiler-supported automatic dif-
ferentiation [22], [23]. While automatic differentiation only
yields gradients for continuous functions, discontinuous inte-
grands can be handled using edge sampling [24], change of
variables [25], or warped-area sampling [26].

5) DIFFERENTIABLE RADAR RENDERING
Inverse rendering has already been proven to be an equally
valuable tool for radar simulation applications. Fu et al. [27]
propose a differential renderer in the context of remote
sensing using synthetic aperture radar (SAR), where they ana-
lytically derive gradients using probability maps, to help with
information retrieval and object recognition. Analogously,
Wilmanski and Tamir [28] employ a differential rasterizer,
which produces feature maps which are then consumed by
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a neural renderer based on generative neural networks to
produce SAR imagery. They demonstrate how to train their
system end-to-end and apply to down-stream tasks such as
object recognition on synthetic data. In the context of radio
communications, Hoydis et al. [29] propose a differentiable
ray tracing tool which simulates and optimizes material and
sensor properties to visualize and maximize coverage. In-
spired by neural radiance fields (NeRF) [17], Huang et al. [30]
introduce a novel view synthesis algorithm, which is based on
mmWave and LIDAR data and obeys radar-specific physics.
After training on range-Doppler images, their implicit to-
mography representation can be rendered from novel view-
points using a reflectance and transmittance-based rendering
pipeline. Similarly, Borts et al. [31] propose to leverage neural
scene representations to reconstruct dense 3D occupancy from
2D Frequency-Modulated Continuous-Wave (FMCW) radar
data. They combine implicit neural geometry with physics-
informed sensor and reflectance models, while operating in
Fourier frequency space as opposed to relying on volumetric
rendering, which is common for NeRF-based approaches.

III. RADAR RENDERING
III.
1) RADAR EQUATION
The radar equation [32] is a common model for ray tracing
based radar simulation algorithms [8], [10]. It yields the ratio
between transmitted, Pt , and received power, Pr , in a radar

Pr

Pt
= Gt Arσ

(4π )2d2
t d2

r
= Gt Grλ

2σ

(4π )3d2
t d2

r
, (1)

where λ is the wavelength, Gt and Gr the transmitting and
receiving antenna gains, and dt , dr the distances of the object
to the transmitter and receiver, respectively. Ar is the effective
aperture of the receiving antenna and is related to the antenna
gain Gr by [33]

Ar = Grλ
2

4π
. (2)

The radar cross section (RCS) σ [m2] defines the scattering
properties of an observed object as a whole, which is approx-
imated as a single point scatterer in the far field. The RCS
depends on a multitude of complicated-to-model factors, such
as, geometry, material, size relative to wavelength, incident
and reflected angles, and polarization, which are aggregated
into a single value. This is in contrast to reflectance models
in computer graphics, where each point on the surface of an
object is parameterized and evaluated individually.

The dimensionless antenna gain Gi = Sreal
Sisotropic

is the ratio of

the maximum signal strength S of the main lobe to the signal
strength of an ideal (lossless) isotropic antenna. For highly di-
rectional antennas, such as antenna arrays with a non-uniform
main lobe and multiple side lobes, simple scalar antenna gains
Gt and Gr are not sufficient, especially in the near field. Thus,
we employ directionally varying antenna gains Gt (ωt ) and
Gr (ωr ), which are pre-computed using electromagnetic field
simulation software and stored as look-up tables for each

FIGURE 1. To compute the near field reflections of a scene object, we
subdivide it into surface elements (left), and compute the reflection for
each such surface element separately (right).

antenna model. Both the gain and power of a radar antenna
are commonly expressed in decibels: GdBi = 10 log10 G and
PdBW = 10 log10 P.

2) RADAR RENDERING
We employ the term radar rendering as a synonym for simu-
lating the received returns of a given radar system and some
scene object using geometrical optics and ray tracing, which
is also referred to as the shooting and bouncing rays (SBR)
method [12] in literature. The goal is to solve for the measured
flux [W ] at each receiving antenna, which was previously
emitted from a transmitting antenna and reflected from the
scene object, analogous to a physical radar. Since the radar
equation approximates each back-scattering object as a single
point target, we need to extend this model for application
in the near field, where objects are much closer to the radar
and cover a larger solid angle. To this end, we transfer exist-
ing concepts from global illumination and physically based
rendering [14] to radar simulation. We argue that, with the
exception of particular wave effects such as diffraction, the
core ideas from computer-graphics models designed for trans-
port in the visible spectrum, i.e., λ ∈ [380 nm, 750 nm], can
be applied in the domain of mmWave radar as well.

Given is a scene object S in the near field of a MIMO
radar. First, we subdivide S into surface elements visible to
the radar, as shown in Fig. 1(left). We then separately compute
the (direct) reflection from each surface element, and finally
add all contributions. To achieve accurate results, the surface
elements must be small enough to account for all relevant
wave effects; we will elaborate on this later. For now, we
assume the surface elements are infinitesimally small. Each
such surface element has a position x, an orientation nx , and
an area dAx (Fig. 1 right). In the following, we derive the
radar cross section of such a surface element dAx , taking into
account its orientation and distance, as well as its reflectance
characteristics. To this end, we first compute the incident
power density, or irradiance E [W m−2], from a transmitting
antenna Txi at x, according to (3):

E (x, ωt ) = Pt Gt

4πd2
t

[W m−2], (3)

where d2
t is the distance between the transmitting antenna and

x and ωt the direction towards the sender (see Fig. 1).
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To model the reflection of this irradiance at a surface
point x, we use the concept of a bidirectional reflectance
distribution function (BRDF) [34]. A BRDF f (ωt , x, ωr ) de-
scribes which fraction of irradiance coming from an incident
direction ωt is reflected by surface point x into exitant di-
rection ωr . In Sect. V we will consider a variety of possible
models to describe f . According to the definition of a BRDF,
the reflected radiance is

L(x, ωr ) = E (x, ωt ) cos(nx, ωt ) f (ωt , x, ωr ), (4)

where cos(n, ω) is the cosine of the angle between the surface
normal n and direction ω and accounts for the projected area
of the surface element.

The resulting radiance L(x, ωr ) is power over projected area
and solid angle, its unit is [W m−2sr−1], with sr being stera-
dian, the unit of solid angle. To compute the resulting power
arriving at the receiver, we need to integrate L(x, ωr ) over
the (projected) surface element cos(nx, ωr )dAx , as well as the
solid angle of the receiving antenna. As before, we model the
receiving antenna as a surface with area Ar , computed from
the antenna gain (2), resulting in a solid angle of Ar/d2

r . Thus,
the integrated power is

Pr = L(x, ωr ) Ar/d2
r︸ ︷︷ ︸

solid angle

cos(nx, ωr )dAx︸ ︷︷ ︸
projected area

= Pt
Gt Grλ

2σ (dAx )

(4π )3d2
t d2

r
, (5)

which is again equivalent to the radar equation from (1). Ac-
cording to this derivation, the radar cross section of the surface
element is

σ (dAx ) = cos(nx, ωt )4π f (ωt , x, ωr ) cos(nx, ωr )dAx [m2].
(6)

The 4π in this equation can be explained by the definition
of BRDFs: the unit of a BRDF is sr−1. Consequently, a BRDF
that uniformly reflects all incident light into the sphere of all
directions has value 1

4π
. With the factor of 4π in (6), this is

normalized to one.
Now, to render a scene object S, we simply integrate (3)–(6)

over all differential area elements dAx ∈ S,

Pr = Ptλ
2

(4π )3

∫
S

Gt (ωt )Gr (ωr )σ (dAx )V (dAx )

d2
t d2

r
dAx [W ]. (7)

The additional visibility term V (dAx ) nullifies transport be-
tween surface elements that can not be seen from either the
sending or receiving antenna, such as the back of the scene
object in Fig. 1 left, and thus ensures valid integration. While
all constants can be pulled from the integral, we need to
retain the distances dt , dr and antenna gains Gt , Gr as inte-
grands, as they change with respect to each individual area
element. Note that (7) is limited to direct reflection without
multipath effects. Leveraging Monte Carlo integration, we can
numerically solve the integral

∫
S using a large number of

stochastically sampled and ray-traced intersections with the

scene object S

Pr = Ptλ
2AS

(4π )3N

N∑
k

Gt (ωk )Gr (ωr )σ (dAk )V (dAk )

ρ(ωk )d2
t d2

r
[W ], (8)

where N is the number of discrete samples, AS the aggregate
surface area of S, and dAk the area element intersected by
the k-th ray path. To improve convergence, we use impor-
tance sampling [35]: rather than selecting samples uniformly,
more sample directions ωk are drawn from regions expected
to contribute more to the signal, expressed as a probability
density function (PDF) over all directions. While such a PDF
ρ(ωk ) can be freely chosen as long as samples are weighted by

1
ρ(ωk ) , convergence improves as ρ(ωk ) approximates the true
energy distribution, which in our case is related to the antenna
gain. Accordingly, we choose ρ (by definition normalized to
one) proportional to Gt , thus more densely sampling rays in
directions with large antenna gain, effectively mitigating vari-
ance due to Gt . Note that, since we sample outgoing ray paths
according to ρ(ωk ), we never select rays with zero probability,
and thus never divide by zero.

Using (8), our radar renderer (RR) computes Pr for all
individual antenna pairs T xi and Rx j in the antenna array. To
this end, we integrate the energy emitted from the transmitting
antenna T xi, reflected from all surface elements dAk , and
received by the receiving antenna Rx j

RR(S) = Pr (T xi, Rx j ) ∀i ∈ NT x ∧ ∀ j ∈ NRx [W ], (9)

where NT x is the number of transmitting and NRx the number
of receiving antennas in the array, respectively. This allows
us to simulate the returns of a mmWave MIMO radar in the
near field while considering both macroscopic (geometry) and
microscopic surface detail (material).

3) IF SIGNAL GENERATION
Finally, to generate the intermediate frequency (IF) signal for
a given time step t and a pair of transmitting and receiving
antennas T xi and Rx j , we accumulate the contributions from
all individual ray paths during radar rendering.

IF (t ) =
N∑
k

Ak (T xi, dAk, Rx j ) exp(−2π j fc(t )τk ), (10)

where Ak is the signal amplitude of the k-th ray path between
T xi, dAk , and Rx j , which was sampled during radar rendering
and can be approximated from the incident power at the re-
ceiving antenna using A ≈ √

P. j is the imaginary unit, fc(t )
is the carrier frequency at the current time step t , and τk is the
time of flight of the k-th ray path. Note that fc(t ) may evaluate
differently based on the type of radar modeled, for exam-
ple continuously for a frequency-modulated continuous-wave
(FMCW), or discretely for a frequency-stepped continuous-
wave (FSCW) radar.

IV. INVERSE RADAR RENDERING
While the goal of traditional (forward) rendering is to syn-
thesize 2D images from given 3D scene parameters such

4

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



as meshes and materials, inverse (backward) rendering in-
stead aims to reconstruct scene parameters from given image
observations. Inverse rendering relies on the same gradient
backpropagation [36] technique as deep learning-based meth-
ods, where neural networks are commonly employed to solve
tasks in a data-driven approach, albeit replacing the neural
network with a renderer. This enables data-driven inference
of 3D scene parameters, such as geometry or materials, from
2D images where the gradients are derived from. Analogously
to most deep learning frameworks, such as PyTorch [37] and
TensorFlow [38], differentiable rendering can be achieved
using automatic differentiation (AD). AD can differentiate
arbitrarily complex functions, given they are composed of
multiple simple (differentiable) operations such as addition
and multiplication. By coupling the derivatives of each differ-
entiable operation using the chain rule, the (partial) derivatives
of any function with respect to its parameters can be com-
puted.

We now apply this concept in a radar simulation context
to infer properties of a known 3D scene under microwave
radiation using inverse rendering. Thus, we optimize for

θ∗ = arg min
θ∈	

L(IF (RR(θ )), y), (11)

where L is a loss function defining the optimization cri-
terion with respect to the ground truth target y. RR and
IF are the radar rendering and intermediate signal genera-
tion steps as described in Section III, and θ∗ the optimal
set of parameters θ from the superset of all possible pa-
rameters 	. The parameter set with the lowest penalty,
i.e., deviation from the ground truth as defined by the loss
function, is then iteratively optimized for using gradient
descent.

To compute the gradients, we store the intermediate results
of each computation step during radar simulation.

αi = RR(θi ), βi = IF (αi ), γi = L(βi, y) (12)

Next, we compute the partial derivatives with respect to the
inputs of each step in the reverse direction, starting from the
loss and going back towards the original input parameter θi.

∂γi

∂βi
= ∂L(βi, y)

∂βi

∂βi

∂αi
= ∂IF (αi )

∂αi

∂αi

∂θi
= ∂RR(θi )

∂θi
(13)

Finally, the gradient of the input parameter θi with respect to
the loss can be determined using the chain rule.

∂γi

∂θi
= ∂γi

∂βi

∂βi

∂αi

∂αi

∂θi
(14)

This is called gradient backpropagation, as the direction of
computations is backwards compared to the regular evaluation
order. This enables us to iteratively optimize for any scene

parameters, using the update rule ∇θi = −ε ∂L
∂θi

, where ε is

called the learning rate, and ∂L
∂θi

are the first-order gradients
of θi with respect to the loss function L.

Automatic differentiation, however, only yields gradients
for continuous functions. This is fortunately the case for all
functions in our use-case, except for the visibility term V in
(7) and (8). While there exist techniques to differentiate dis-
continuous functions, for example by change of variables [26],
we failed to see a notable benefit for our use-case. The in-
herent setup of a radar, where emitters and receivers are
co-located, strongly attenuates the impact of a visibility term,
especially when not considering multi-bounce effects during
rendering. This allows us to treat the visibility term as a con-
stant during backpropagation, and thus significantly simplify
the implementation without loss of generality.

V. ALGORITHM
The goal of our inverse radar simulation pipeline is to infer
information about a scene from real radar data. In theory,
we could optimize for arbitrary parameters, such as scene
geometry, material parameters, or antenna configurations. In
this paper, however, we assume that the geometry of a scene
is known – in fact it is reconstructed independently using
photogrammetry – and we optimize only for the material
parameters of the scene, i.e., parameters of a model that de-
scribes how surface points reflect incident radar waves. To this
end, we iteratively adjust our simulation to produce output as
close as possible to a real radar, with the aim to reconstruct
material properties which best explain the observations of the
real mmWave radar.

As input, we require scene geometry, a material model
and regularization, a description of the radar to be simu-
lated, and ground truth radar returns. Scene geometry and
ground truth data is provided by the MAROON [39] dataset,
which we further detail in Section VI. By tracing rays from
each transmitting antenna into the scene, which are then
reflected and returned to the receiving antennas, we com-
pute the IF signal of the simulated radar system. The output
of our simulation is of identical format to the real radar,
i.e., an array of complex numbers depending on the an-
tenna layout of the radar, which can be used interchangeably
in signal processing algorithms. A high-level overview of
our proposed inverse radar simulation pipeline is given in
Fig. 2.

Since MAROON [39] provides mesh geometry using multi-
view stereo (MVS), some residual error from the domain gap
between optical and radar sensors, and a small registration
error [40], are to be expected. Note that our approach is not
limited to MVS and supports any source of mesh geometry. A
perfect match between the outputs of a real radar and a radar
simulator should not be expected either, due to the inherent
complexity of the electromagnetic processes involved. Never-
theless, we demonstrate that our optimization yields simulated
returns that very closely match a real radar.
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FIGURE 2. Our inverse rendering pipeline for near-field mmWave MIMO radar, where we iteratively optimize material properties until the simulated
phasor data matches the real data as closely as possible. This way, we can directly infer material properties of known scene geometry under microwave
radiation from observations of a real radar, which in turn enables further down-stream tasks such as object recognition and material characterization.

A. SIMULATED RADAR SETUP
We rely on information provided by the radar manufacturer
and electromagnetic field simulation software to compute the
antenna characteristics based on CAD models of the antenna
array. During ray tracing, we consider the positions of the
transmitting and receiving antennas, carrier frequency, band-
width, transmission losses and directional antenna gains.

1) RESIDUAL RADAR GAIN
To handle any unknown or difficult-to-model effects, such as
losses on transmission lines and antenna-specific impedance,
we introduce a residual gain value per radar, which we op-
timize alongside any other scene parameters. This way, we
enable the optimization process to more closely match the
magnitudes of the signal measured by the real radar. We ini-
tialize this residual gain factor to 6 dB, which we empirically
found to be a good starting point for most scenes we ex-
perimented on. However, it is ambiguous to the optimization
process whether the material of the scene object should reflect
more energy, or the residual gain value should be increased.
Resolving ambiguities, such as disentangling reflectance and
gain, is an ill-posed problem that is still actively researched in
the context of inverse rendering [41].

2) ANTENNA CHARACTERISTICS
Leveraging CST Studio Suite, we pre-compute antenna char-
acteristics for the transmitting and receiving antennas respec-
tively. During rendering, we read the directional antenna gains
Gt (ωi ) and Gr (ωo) from the resulting look-up tables and plug
them into (8). We rely on these pre-computed characteristics
when shooting rays from TX antennas to focus more rays
towards areas with higher output gain and thus focus com-
putations on well illuminated areas.

3) FINE REGISTRATION
Since the fidelity of our radar simulation directly depends
on the accuracy of the virtual scene representation, even a
small registration error may strongly interfere with the re-
sults. Especially phase information is strongly dependent on
the accuracy of the registration, where even sub-millimeter
errors may cause significant phase shifts in the resulting sig-
nal. Thus, we introduce a per-scene correction term in the
range of ±λ

2 along each principal axis to compensate for any
registration errors, for example introduced by the photomet-
ric reconstruction. This correction term is initialized to zero
and optimized analogous to any other parameters. We limit
this offset to |λ

2 |, where λ is set to the longest wavelength
employed by the radar, to avoid large offsets from exploding
gradients and local minima in the optimization process due
to the recurrent nature of waves. The MAROON [39] dataset
reports registration errors up to 1–2 millimeters, which is well
handled by our correction term.

B. MATERIAL
Once a ray hits an object in the scene, the material defines how
much energy is either reflected or absorbed. In our system,
the material consists of two components: the material model,
which yields the reflection properties of a surface, and the
regularization, which yields how the parameters of a model
may vary spatially or by frequency. In the following, we in-
troduce multiple variants for each, which we later evaluate in
Section VII.

1) MATERIAL MODELS
We tested five different material models of varying complex-
ity, which can all interchangeably be substituted into f in (6).
We informally include equations for each model to provide
the reader an outline of each model’s complexity. There is no
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need to follow every minute detail of these computer graphics
inspired models, but we refer any interested readers to the
physically based rendering (PBR) [14] book. Instead, our goal
is to focus on the conceptual differences between the mod-
els we evaluated, for example how the reconstruction quality
changes with the addition of rough specular reflection versus
purely diffuse scattering, or when incorporating complex in-
dices of refraction.
2) f0: Baseline: As a baseline, we employ a simple diffuse
material model, whose sole reflectivity parameter θ0 ∈ [0, 1]
determines the scalar reflectivity of a surface. This parameter
can either be interpreted as albedo in computer graphics terms,
or as (normalized) radar cross section in radar terms.

f0(ωt , ωr ) = θ0 (15)

3) f1: Mixed Phong: We adapt the idea from Schüßler at
al. [12], where a linear blending factor θ1 ∈ [0, 1] determines
how diffuse or specular an object appears under microwave
radiation. They employ linear interpolation between diffuse
and specular mirror reflection. Perfect mirror reflection, how-
ever, is a Dirac delta function which has a singularity at
the reflection direction and is zero everywhere else. As we
simultaneously connect each ray-traced hit point with all
transmitting and receiving antennas during radar simulation,
it would require the receiving antenna to perfectly align with
the reflection direction, which is statistically impossible for
a Dirac delta function. Thus, we employ the specular Blinn-
Phong [42] reflection model P instead, which introduces the
exponent θ0 ∈ [1, 100] as a parameter. This effectively nar-
rows or widens the angle around the peak at the perfect
reflection direction, and thus allows for transport over a wider
range of angles. Note that we normalize both diffuse and
specular reflection terms to obey energy conservation and
I(x, y, a) implements linear interpolation between x and y.

f1(ωt , ωr ) = I
(

1

π
,P(ωt , ωr, θ0)

(θ0 + 1)

2π
, θ1

)
(16)

4) f2: Layered BRDF: This model employs a bidirectional
reflectance distribution function (BRDF), similar to physically
based rendering (PBR) [14] models in computer graphics.
This BRDF consists of two layers, a specular coating layer and
a diffuse base layer with albedo θ0 ∈ [0, 1]. The (real-valued)
Fresnel term Fr , parameterized by the (real-valued) index
of refraction θ1 ∈ [1, 10], determines the fraction of photons
which reflect from each layer, where reflectance corresponds
to the specular coating layer and transmittance corresponds to
the diffuse base layer. Specular reflection is modeled using the
GGX microfacet distribution DGGX [43] and Smith shadow-
ing term G1 [44], which are parameterized by roughness θ2 ∈
[0, 1] and allow for both mirror-like and glossy reflection. As
before, we blend between diffuse and specular reflection using
θ3 ∈ [0, 1].

F = Fr (cos(ωt ), θ1)

D = DGGX(ωh, θ2)

G = G1(ωr, θ2)G1(ωt , θ2)

f2(ωt , ωr ) = I
(

θ0

π
,

FDG

4 cos(ωr ) cos(ωt )
, θ3

)
(17)

5) f3: Fresnel Smooth: While most visible light can safely
be assumed to be incoherently polarized, polarization plays
a more crucial role in the context of microwave radiation, as
most hardware emits coherently polarized waves. Thus, we
employ a material model with complex indices of refraction,
composed of both a real part θ0 ∈ [1, 100] (permittivity) and
complex θ1 ∈ [0, 100] part (conductivity). The horizontal and
vertical polarization components are handled separately via
the the two Fresnel terms Fs and Fp, and a linear combination
of both is returned using θ3 ∈ [0, 1]. This removes the need
for an explicit albedo parameter, since absorption is implic-
itly modeled via complex arithmetic. Additionally, Brewster’s
angles are introduced, where the vertical polarization is fully
refracted and all reflected energy is horizontally polarized.
Note that this material model assumes dielectric interfaces and
smooth surfaces under microwave radiation.

ni = θ0 − θ1i

Fs = Fs(cos(ωt ), ni )

Fp = Fp(cos(ωt ), ni )

f3(ωt , ωr ) = I(Fs, Fp, θ3) (18)

6) f4: Fresnel Rough: Finally, we aim to relax the smooth
surface requirement of the previous Fresnel-based material
model, by re-introducing a GGX microfacet lobe to incor-
porate both smooth and rough structures on the surface into
the model. Similarly, we omit an albedo parameter with this
material model, since absorption is implicitly modeled by
the Fresnel equations. We limit the roughness parameter θ2 ∈
[0, 1] to modulate the amplitude of the reflected waves and ig-
nore phase differences from variable microfacet heights, since
we noticed severe overfitting when introducing phase delays
in the material model. Similarly, a linear combination of the
horizontal and vertical polarization component is returned via
θ3 ∈ [0, 1].

f4(ωt , ωr ) = I(Fs, Fp, θ3)DG

4 cos(ωr ) cos(ωt )
(19)

2) MATERIAL PARAMETER REGULARIZATION
Next, we address how to represent and regularize the indi-
vidual parameters of the material models. The main question
is whether to allow for the parameters to vary spatially, and
how, or to only optimize for a single set of parameters per
scene. In the following, we introduce four variants: Global,
Voxelgrid, Hashgrid and Vertex. Independent of the spatial
regularization, we linearly interpolate all material parameters
across the emitted wavelengths to cover frequency-dependent
effects.
2) Global: The most straightforward, but at the same time
strongest regularization, is to optimize for a single set of
material parameters per scene. This limits the capabilities of
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the model and assumes the material in the scene to be spatially
constant, which may not suffice for more complex materials
with spatially varying features, such as the grain pattern in
wood, for example. Overfitting, however, is nearly impossible
due to gradients being averaged over the whole scene.
2) Voxelgrid: Alternatively, we subdivide the scene into a
uniform grid of 3D voxels and store material parameters at
each voxel’s center. This allows for the parameters to vary
spatially without any assumption of scene geometry and en-
sures constant spacing between parameters. The coarseness of
the subdivision scheme trades between spatial resolution and
memory requirements and we perform tri-linear interpolation
to ensure smooth and continuous transitions.
2) Hashgrid: A popular choice of underlying scene repre-
sentation in the context of novel view synthesis [17] is a
hash-based grid encoding combined with a multilayer percep-
tron (MLP) [18]. The multi-resolution hash-based encoding
scheme replaces the fixed mapping between points in space
and voxels, which automatically adapts to the underlying
geometry and simultaneously encodes material parameters
at multiple spatial resolutions, which allows for crosstalk
between parameters at different scales. The hierarchical en-
coding scheme combined with an MLP allows for a compact
representation, albeit at the cost of high-frequency noise due
to hash collisions and high computational cost per parameter
lookup.
2) Vertex: Finally, we opted to store material parameters with
the scene geometry, specifically at each triangle vertex. This
approach couples the spatial resolution, and thus regulariza-
tion, of the material parameters with the geometry, which is
the resolution limit of the input data. The main drawback,
however, is the direct dependency on tessellation, as the num-
ber of stored parameters and their spacing fully depends on the
mesh. To circumvent tessellation impacting our experiments,
we pre-process each scene to equalize the tessellation level,
which will be further discussed in Section VI-B. We leverage
the barycentric coordinates computed by ray tracing hardware
to smoothly interpolate between the material parameters at the
vertices of the intersected triangle.

3) NORMAL MAP
Since every material model, except for the Baseline model,
strongly depends on the surface normal, we optionally also
optimize for a normal map. This normal map stores a small
offset to the normal at each vertex of the mesh to locally fix
inaccuracies in the MVS reconstruction. We initialize these
offsets to zero and optimize them alongside all other material
parameters, if enabled.

C. LOSS FUNCTION
The choice of loss function is critical for any gradient back-
propagation algorithm, as it defines the optimization criterion
where gradients are derived from. In the context of imaging
radar, the obvious candidate for inverse rendering is to ap-
ply the loss function to the reconstructed (2D) radar images.

However, we found that the maximum projection, which is
often used to project the resulting 3D volume to 2D [4],
does not yield viable gradients in practice, and causes the
optimization to either converge slowly, or not at all. Thus, we
instead propose to compute the loss on the full 3D volume,
before any projection is applied. To this end, we compare the
reconstructed voxels from the simulated and real radar data
using the mean squared error

L2-REC =
∑N

i [REC(y)i − REC(IF (RR(θ )))i]2

N
, (20)

where REC() is a 3D radar reconstruction algorithm, such as
the Fourier transform or backprojection [4]. Note that when
computing L2-REC on decibel values, the resulting volumes
must use the same (absolute) reference or the optimiza-
tion will diverge. While this improves convergence, we still
found the optimization process to be volatile and the results
unsatisfactory. Thus, we further propose to skip the radar re-
construction algorithm entirely and compute the loss directly
from the IF signal, either using the L1 or L2 norm.

L1-IF =
∑N

i |yi − IF (RR(θ ))i|
N

L2-IF =
∑N

i [yi − IF (RR(θ ))i]2

N
(21)

This approach, however, requires the simulated phasor to
match the real radar data more closely, both in terms of
amplitude and phase, as we directly compare (absolute) pha-
sor values instead of (relative) correlation values from the
radar reconstruction. The residual radar gain, as previously
introduced in Section V-A, enables our simulation to closely
match the real phasor. We provide a thorough evaluation of
the choice of loss function for inverse radar rendering in Sec-
tion VII.

D. IMPLEMENTATION
For this paper, we implemented a radar simulation framework
from scratch. Each performance-critical part is executed on
the GPU, which yields significant speed-ups compared to
a purely CPU-based implementation, due to massive paral-
lelism. For ease of use, the required (inverse) radar rendering
kernels were integrated into a Python-based PyTorch [37]
framework using custom extensions written in the CUDA [45]
programming language. Furthermore, to realize automatic dif-
ferentiation for large custom kernels, such as radar rendering
or IF signal generation, we employ Slang-D [23], which is
a shader pre-compilation tool that expands the feature set
of common shading languages. They recently extended their
tool with automatic differentiation support for CUDA kernels,
which allow for fast iteration times during development of
inverse rendering kernels, by omitting the need for explicit
derivatives which are time-consuming and error prone to write
by hand. A native implementation in Python using PyTorch
would not have been feasible due to excessive storage require-
ments of intermediate states in the computational graph and
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FIGURE 3. The MAROON dataset employs a multiple-input
multiple-output (MIMO) imaging radar as well as a multi view stereo
system (MVS), which we use to acquire ground truth information for our
simulation. The image is taken from [39].

exceptionally high runtime. For fast ray tracing, we leverage
OptiX [46], which provides high-performance ray intersection
tests on the GPU while making use of modern ray tracing
hardware. The code of our simulation framework is publicly
available.1

VI. HARDWARE AND DATASET
While an evaluation of real-world use-cases is notably more
difficult compared to synthetic examples, we demonstrate the
applicability to real-world scenarios and base our experiments
on the MAROON [39] dataset. This dataset provides optical
ground truth reconstructions as well as sensor data collected
from a MIMO imaging radar in conjunction with four optical
depth sensors. Within the sensor variety, we particularly rely
on the radar captures which were spatially calibrated with a
ground truth MVS system of five DSLR cameras. The corre-
sponding hardware setup is depicted in Fig. 3, of which further
details are given in Section VI-A. Moreover, in Section VI-B
we explain the details of the dataset, which are relevant for
our experiments.

A. MIMO RADAR AND MVS
The employed MIMO radar is a submodule of a near-field
imaging system from Rohde & Schwarz [47], as pictured in
Fig. 3. The square-shaped antenna aperture consists of 94
transmitting (TX) and 94 receiving (RX) antennas, and the
signal is sampled at 128 discrete frequencies in frequency
stepped continuous wave (FSCW) manner. The frequency
band reaches from 72 GHz to 82 GHz, i.e. 10 GHz of band-
width, which results in a maximum unambiguous range of
1.9 m and a spatial resolution of 4 × 4 × 11 mm at 30 cm

1https://github.com/nihofm/inverse-radar-rendering

depth [39]. Time-division multiplexing avoids signal interfer-
ence and ensures that the signal is separated into its pairwise
Tx-Rx antenna and respective frequency components.

While the dataset contains reconstructions from multiple
sensor types, we solely employ the data of the MVS system,
of which the five distinct viewpoints allow for accurate, high-
resolution reconstructions of the observed objects.

B. DATASET
The MAROON dataset comprises 45 objects captured from
five depth sensors, namely one imaging radar, three RGB-D
cameras, and a ground-truth MVS system. Each object is
recorded at three different distances to the radar sensor, of
which we utilize the sensor data of nearest distance (30 cm).

1) SENSOR DATA
In accordance with the previously described antenna arrange-
ment, the capture output of the MIMO imaging radar is a 94 ×
94 × 128 tensor of complex phasors. To reconstruct an object
from the raw data, backprojection [1] can be applied as sug-
gested by [39]. The result of this algorithm is a 3D volumetric
representation in form of a N × M × D voxel grid, where each
entry contains a confidence value about the object’s presence
at the respective voxel center. By applying maximum pro-
jection [48], a dimensionality reduction is achieved such that
the result can be visualized as an intensity-encoded 2D radar
depth image, which is depicted in Fig. 4. Furthermore, the
depth values are commonly filtered using a cutoff threshold
in decibel. We explicitly note that the presented depth and
radar images are only used for visualizing the presented data
in our experiments. Instead, the gradients of the optimization
are either computed from the complex tensor of phasors or
from the 3D volumetric grid, as described in Section V-C.

For the MVS system, reconstructions are provided in form
of a 3D triangle mesh. Further processing and sanitation of
this mesh yields a high-resolution ground truth version of
each object. After spatial alignment with the radar coordinate
system, we get a 3D mesh that is placed in front of the
radar aperture alongside the reconstructed radar signal. As
mentioned for the vertex representation in Section V-B2, the
tessellation level of the mesh is equalized across all object
reconstructions. Similar to the evaluation in [39], we rasterize
the spatially aligned MVS mesh with respect to the 2D radar
pixel grid and, subsequently, triangulate the resulting depth
map using the topology defined by the pixel neighborhood.
In this way, the tessellation level is kept consistent with the
sample resolution of the radar reconstruction.

2) EMPTY ROOM MEASUREMENT
A straightforward approach to reduce clutter and side-lobe
artifacts in measurements from the real radar is to perform
an empty room measurement. Due to our radar rendering
framework being limited to a single bounce and the MVS
reconstructions in the MAROON dataset only including the
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FIGURE 4. We showcase the (tessellated) multi-view stereo (MVS) and radar data at 35 dB dynamic range from the S1 Hand Open scene, which we
utilize as ground truth for our algorithm. The mesh and radar data is pre-processed and aligned, which allows us to directly input scenes from the
MAROON dataset into our pipeline without any modifications, except for the additional tessellation to equalize the mesh for the Vertex regularization.

object in front of the radar, we do not have any means to simu-
late the multi-bounce returns and background clutter from the
room the radar setup was placed in. Thus, we utilize the empty
room measurements in MAROON that were made without
any object in front of the radar. We then subtract this data
from the measurement with an object in front of the radar. In
this way, we emphasize the returns from the object and mask
clutter returned from the room, which cannot be simulated
given our framework and the dataset.

VII. RESULTS
In the following, we provide a comprehensive qualitative and
quantitative evaluation of our inverse radar simulation frame-
work on both synthetic and real-world data. For each of the 45
scenes in the MAROON dataset, we evaluated over 15 variants
of our algorithm, performing 250 radar rendering and gradi-
ent update steps each, which summed up to approximately
1500 GPU hours across multiple NVIDIA A40 GPUs. Unless
stated otherwise, we employed the following configuration.
We perform ray tracing until 218 stochastically sampled in-
tersections with the scene were found, totaling ≈ 296 × 109

connections between transmitting and receiving antennas for
each simulation step. Backprojection was performed with
a sample resolution of N = 128, M = 128, and D = 	 DS

DV



voxels, where DS is the depth extent of the scene and DV

of a voxel, respectively. We visualize reconstructions with a
dynamic range of 35 dB to also show clutter and sidelobes
from the reconstruction in the intensity-encoded radar images.
Optimizations were performed using the L1-IF loss function
and the Adam [49] optimizer with a learning rate of 0.1 and
betas of (0.5, 0.9).

A. SYNTHETIC VALIDATION
To validate our inverse radar rendering system and the com-
puted gradients for correctness, we execute the optimization
process on synthetic data generated within our own simulation
software. In this setting, the target data matches the simulation
perfectly and we should be able to reproduce the input param-
eters very accurately, given our system works correctly and we
do not get stuck in local minima. Stil, a perfect reconstruction
should not be expected due to noise from stochastic sampling,
inherent noisiness of iterative gradient-based optimization and

FIGURE 5. We validate our inverse radar rendering framework on
synthetic data using the geometry from the S1 Hand Open scene, while
using a single set of material parameters (Global) and spatially varying
material parameters (Vertex). For each variant, we executed five
optimization runs with fully randomized starting and target states. We
show reconstructions at 35 dB dynamic range for two example runs (top)
and loss curves for all optimizations (bottom). All runs converged with a
final loss value of <0.01, which supports our implementation. A loss value
of exactly zero is not achievable in practice due stochastic noise in the
sampling and optimization process.

bias from the Adam optimizer. To this end, we load the ge-
ometry from the S1 Hand Open scene, randomly choose
target material parameters, simulate the target radar data, reset
all material parameters to different random values, and start
the optimization process to try to recover the original set of
parameters. We report results for both using a single material
(Global) and a spatially varying material (Vertex) in Fig. 5.
After 250 iterations, all runs achieved convergence with a final
loss value of < 0.01, which supports our approach.

B. QUALITATIVE EVALUATION
We now qualitatively evaluate our inverse radar rendering
framework on real-world data using the MAROON [39]
dataset. We showcase four selected scenes using the Fresnel
Rough material model and Vertex regularization in Fig. 6
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FIGURE 6. We showcase inverse radar rendering results at 35 dB dynamic
range on four exemplary scenes: V1 Metal Plate, Wood Plane,
Plunger, and S1 Hand Open. The first column shows the MVS input data
(depth and normals) from the MAROON dataset, while the second and
third columns show the simulated radar returns just after initialization
(second column) and after inverse radar rendering (third column). The real
radar returns are visualized in the fourth column.

and further scenes in the supplemental material. While the
radar images with randomly initialized parameters (Iteration
0) exhibit notable differences to the real-word counterpart, we
show that our simulation is able to achieve very similar results
after optimization (Iteration 250). For a multitude of scenes
and materials, such as metal, wood, rubber, and a human
hand as depicted in Fig. 6, the returns of our simulated radar
closely match the real-world radar after optimization. Note
that these images were created for visualization purposes only,
as inverse rendering was performed on the IF signal directly
instead of the reconstructed radar images, which yielded better
results and will be further examined in Section VII-C. Thus,
our inverse radar-rendering approach is both applicable to
synthetic and real-word data.

In Fig. 7, we additionally evaluate the residual gain term,
which was previously introduced in Section V, for a multitude
of scenes and configurations. Except for a few outliers with
particularly low gain, most optimization runs converged to a
residual gain value in the range of 5 to 10 dB, as apparent
from Fig. 7. We argue for the residual gain values to be of
reasonable magnitude, as the estimated transmission losses of
our employed MIMO radar are ≈ 6 dB.

Next, we visualize intermediate material parameters dur-
ing two optimization runs with varying spatial regularization
strength in Fig. 8, while utilizing the Fresnel Rough material
model and Voxelgrid regularization. With all parameter reg-
ularization options that allow spatial variation, we generally
noticed a trend of increased spatial variation in the material
parameters with iteration count. While this may stem from the
inherent complexity of the observed material, it may also stem
from overfitting the model to the target data. In such cases,
non-material related effects are also incorporated into the

FIGURE 7. We visualize residual antenna gains for each step in the
optimization process on nine example scenes from the MAROON dataset
while using the Fresnel Rough material model and Vertex parameter
regularization (top). We additionally plot a density histogram over the
resulting residual gain values of ≈750 converged optimization runs across
all scenes and variants we executed (bottom).

FIGURE 8. We visualize the effect of spatial regularization strength on the
resulting material parameters from inverse rendering on two scenes from
MAROON. The material model is Fresnel Rough with low and high spatial
regularization modes using the Voxelgrid with ≈2e6 parameters for the low
and ≈1e3 parameters for the high mode. The first two columns show the
real and complex parts of the refractive indices, with their original range
of [0, 100] mapped to [0, 1] for visualization purposes. The third and fourth
columns show the roughness and polarization parameters with their range
in [0, 1]. Note how the material parameters for the low regularization mode
exhibit very strong spatial variation, which indicates overfitting to the
target data, while the high regularization mode ensures spatially coherent
parameters.

material properties due to the lazy nature of the optimization
process. When trying to recover fine surface details, such as
the grain pattern of the Wood Plane scene shown in Fig. 6,
however, high spatial variation of the material properties is
required.
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FIGURE 9. We quantitatively evaluate different optimization criteria on the MAROON dataset. We report L1-IF loss (lower is better) for nine
representative scenes and report statistics over the overall dataset in the last panel. The L1-IF and L2-IF optimization criteria, which both operate on the
intermediate frequency signal directly, did not exhibit any notable differences in the reconstruction fidelity in our tests. However, when additionally
incorporating the radar reconstruction algorithm (L2-Rec), we observed a significant drop in reconstruction quality. Due to ambiguities in the signal
reconstruction pipeline, and thus ambiguities in the gradients, the optimization regressed notably compared to the IF-based loss functions.

C. QUANTITATIVE EVALUATION: LOSS FUNCTIONS
To quantitatively evaluate the impact of the loss functions
introduced in Section V on the optimization process, we ex-
ecuted our pipeline on all scenes in the MAROON dataset
while using each loss function as optimization criterion.
However, when the loss function is not only used during opti-
mization, but also during evaluation, training on loss A while
evaluating on loss A will yield better results than training on
loss A and evaluating on loss B due to overfitting. For the
remainder of this work, we report L1-IF loss as the main
evaluation criterion, which makes the comparison between
L2-IF and L2-REC metrics unbiased, but introduces a small
bias for the L1-IF loss. Individual results for nine select
scenes of the dataset are visualized in Fig. 9 and we tabularize
the mean (μL1) and standard deviation (σ̂L1) of the L1-IF
loss across all 45 scenes in MAROON here:

Both loss functions L1-IF and L2-IF, which compare raw
radar returns, robustly yield near-identical results of high
quality and could be used interchangeably in our tests. When
training on L2-REC, however, which includes the FSCW re-
construction algorithm [48], we observed notably degraded
results. We infer that optimizing on the reconstructed signal
introduces twofold issues. Firstly, any artifacts introduced
by the reconstruction algorithm are automatically incorpo-
rated into the optimization process, which negatively impacts
reconstruction fidelity. Since the reconstruction assumes va-
lidity of the Born approximation [4] and there are numerous
cases in practice where this requirement is not met, systematic
artifacts are introduced, such as ambiguities and ringing, for
example. This directly impacts the computed gradients for
each iterative update, as they are immediately derived from
the loss. Secondly, due to the relative nature of correlation,
constructive or destructive interference and subsequent nor-
malization, numerical stability becomes an issue and may
cause vanishing or exploding gradients, which occurred after

only a few epochs in our tests if not accounted for. Thus,
we strongly argue for inverse radar rendering applications to
directly optimize on the intermediate frequency signal instead
of reconstructed images or volumes.

D. QUANTITATIVE EVALUATION: MATERIAL
REGULARIZATION
To evaluate the effect of the spatial regularization variants
from Section V-B2 on reconstruction quality, we ran our al-
gorithm for each scene with constant configuration and varied
the material parameter regularization. The only exception be-
ing the Hashgrid representation, which was trained with a
lower learning rate of 0.01 instead to ensure convergence.
We visualize the results in Fig. 10 and summarize the overall
results for all 45 scenes in the MAROON dataset here:

In terms of loss, the Voxelgrid variant performed best, with
the Vertex and Hashgrid variants closely behind. The Global
variant performed worst in terms of L1-IF loss, which is to
be expected given the comparably strong regularization versus
the other variants. One can clearly see the effect of spatial
variation in the material parameters, as the Global option is
an outlier. For simple scenes which can be described using
only a single set of material parameters, which is largely the
case for the MAROON dataset, we consider the Global to be
the most useful regularization for real-world applications due
to its high interpretability and low susceptibility to overfitting.
While any variant with spatially varying material parameters
achieves lower overall loss, we observe strong and repeti-
tive fluctuations in the resulting material properties for areas
which are not prominently backscattering under microwave
radiation and thus contribute less to the overall signal. This
indicates overfitting, where the optimization only strives to
match the target IF signal without considering physical plau-
sibility, which is not particularly useful in practice. Thus,
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FIGURE 10. We quantitatively evaluate different material parameter regularization techniques on the MAROON dataset. We report L1-IF loss (lower is
better) for nine representative scenes and report statistics over the overall dataset in the last panel. A detailed overview over all scenes is provided in the
supplemental material. All variants which allow for spatially varying parameters (Voxelgrid, Hashgrid, and Vertex) performed relatively similar in terms of
the reconstruction loss, with the Voxelgrid option performing best. The Global option, which uses a single set of parameters, performed notably worse for
all scenes; however, in practice this option might be a very valuable option due to the strong regularization and low susceptibility to overfitting.

FIGURE 11. We quantitatively evaluate different material models on the MAROON dataset. We report L1-IF loss (lower is better) for nine representative
scenes and report statistics over the overall dataset in the bottom right panel. A detailed overview over all scenes is provided in the supplemental
material. While the Baseline and Mixed Phong models performed worst, the Layered BRDF and Fresnel Smooth yielded very similar reconstruction
fidelity, and the Fresnel Rough produced the best reconstruction quality in terms of L1-IF loss compared to returns of a real radar.

we advise to use the strongest regularization applicable, ei-
ther via a single set of parameters if the scene permits, or
to adaptively penalize spatial variation in the resulting ma-
terial parameters. Determining the ideal regularization term,
however, is a scene-dependent trade-off and requires further
research.

E. QUANTITATIVE EVALUATION: MATERIAL MODELS
To evaluate the effect of the material models from
Section V-B1, we executed our algorithm with constant con-
figuration for each scene of the MAROON dataset and only
varied the underlying material model. The results are visu-
alized in Fig. 11 and summarized for all 45 scenes in the
following:

While the conceptually simple Baseline material performed
worst overall, the Mixed Phong material model did improve

over the baseline in terms of average L1-IF loss. A no-
table improvement over the Phong-based mixture model was
achieved by the computer graphics-inspired Layered BRDF
model, which first introduced both a roughness term for
non-smooth surfaces and (real-valued) Fresnel term for di-
electrics. The Fresnel Smooth material model, which further
expands on the Fresnel term while assuming smooth surfaces,
achieved very similar results compared to the Layered BRDF
model. The Fresnel Rough model, which extends the Fres-
nel Smooth model by a microfacet-based roughness term to
incorporate rough surfaces, performed best overall in our ex-
periments. This indicates that the smooth surface approxima-
tion for Fresnel-based transport does not always hold true in
practice.

It should be noted that in the context of gradient backpropa-
gation, optimization algorithms always perform lazy, and their
only aim is to reduce the loss without adhering to physical
constraints. Thus, when giving a model more freedom, which
is usually equivalent to an increase in parameters, it may
reduce the overall loss without any practical advantage, i.e.,
overfitting the model to the data. While further research is
needed to confirm the physical plausibility of our material
models and parameters, we argue that the previously shown
improvements over a wide range of scenes and materials
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FIGURE 12. We performed ablation studies regarding multiple variants of our inverse radar rendering framework on the MAROON dataset. We report
differences in L1-IF loss (lower is better) with respect to a baseline for nine representative scenes and report statistics across the full dataset in the last
panel. A detailed overview over all scenes is provided in the supplemental material. The additionally optimized Fine Registration offset, which
compensates for a small registration error in the scene, yielded the largest overall benefit in our tests. For scenes with very accurate registration, however,
such as Wood Plane, this feature did not provide much benefit. Secondly, performing an empty room measurement to reduce background clutter (Empty
Room), also turned out be a very valid approach, with every scene either improving or at least staying consistent. For the APC and Normalmap variants,
however, we did not see as consistently improved results, where the APC option even regressed reconstruction quality for some scenes.

provide a valuable stepping stone towards practical material
property inference for mmWave radar using inverse rendering.

F. ABLATION STUDIES
We further performed multiple ablation studies of our system
with respect to empty-room measurements, fine registration,
directional antenna power characteristic (APC), and normal
map optimization. To this end, we evaluate each scene of the
MAROON dataset with and without the feature in question to
investigate the effect on reconstruction fidelity. We used the
Global material regularization for the Empty Room Measure-
ment, Fine Registration, and APC tests to reduce overfitting to
a minimum and single out the effect of the respective feature.
For the Normal Map variant, which is inherently spatially
varying, we used the Vertex material regularization as a base-
line instead to isolate its effect. We visualize results in Fig. 12
and tabularize the average L1-IF loss μL1 without and with
the respective features in the following.

1) EMPTY ROOM MEASUREMENT
We observed a reduction of the average loss across all scenes
from 30.99 to 28.64 when optimizing against a target where
the empty room measurement has been subtracted from,
which corresponds to an improvement of ≈7.6%.

2) FINE REGISTRATION
When additionally optimizing for a small registration offset,
as described in Section V-A, we observed a reduction of the
average loss across all scenes from 30.99 to 28.57, which
corresponds to the largest observed improvement of ≈ 7.8%.

3) ANTENNA POWER CHARACTERISTIC
When considering the pre-computed APCs during radar sim-
ulation, we noted improvements in some scenes and deterio-
ration in others, which resulted in a regression of the average
loss by ≈1.5% overall. This might be due to all scenes in
MAROON consisting of objects directly in front of the radar,
which are all covered by the main lobe of the antennas, and
thus reduce the effectiveness of the APC. When additionally
simulating returns of the room with multi-bounce reflections,
for example, we expect a larger impact of the antenna power
characteristics due to more ray paths actually covering the side
lobes.

4) NORMAL MAP
When additionally optimizing a normal map, as described in
Section V-B2, we report a small reduction of the overall aver-
age loss for all scenes from 24.74 to 24.19, which corresponds
to an improvement of ≈2.2%. Note that this experiment was
conducted while allowing for spatially varying material pa-
rameters to isolate the effect of the normal map, which is
spatially varying by design.

VIII. CONCLUSION
We conclude that our inverse near-field MIMO radar render-
ing framework, which we formally derived and implemented
on the GPU, is able to reconstruct material parameters from
the phasor data of both synthetic and real radar datasets. We
outlined any extra steps required to realize such a system with
real radar data in practice, such as optimizing for residual
gain and a registration offset. Our comprehensive evaluation
showed that directly deriving the loss from the phasor data
is a clear improvement compared to incorporating recon-
struction algorithms, such as backprojection. Furthermore, the
introduced material models and regularization options notably
improved reconstruction fidelity in terms of loss compared
to a baseline material implementation. Finally, we hope that
our findings prove to be an important stepping stone towards
inverse radar rendering for near-field MIMO radar and enable
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a multitude of downstream tasks, such as object recognition
and material characterization.

VIII. LIMITATIONS AND FUTURE WORK
Naturally, our system comes with its own set of limitations.
Due to the introduction of a residual gain value and the lazy
nature of the optimization, ambiguities between scattering
behaviour and residual gain can not be fully resolved. We
also noticed severe overfitting of material models with spa-
tially varying parameters and significant degrees of freedom
with respect to phase information, such as phase delays from
microfacet distributions, which requires further research w.r.t.
parameter regularization. Furthermore, we utilized a sim-
ple polarization model, and disabled both visibility gradients
and multi-bounce effects in our renderer, which reduces the
complexity of the implementation and keeps the number of
optimized parameters in check, but may be improved upon
in the future. Since we limit our fine registration offset to
±λ

2 , the employed dataset must obey to this registration er-
ror, which fortunately is the case for the MAROON dataset.
Finally, reconstructing both geometry and materials from pha-
sor data poses an interesting area of future research. Initial
experiments, however, suggest this avenue to pose a major
challenge with a geometrical optics approach, due to highly
irregular loss landscapes generated by waves reflected from
infinitesimally small point targets.
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