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S1. Summary

In this supplementary material, we include additional visualizations,

comparisons, evaluations, and details useful for the reproducibility

of our results.

S2. Detailed quantitative results

In Table 4 we include a detailed breakdown of our scores for each

texture class in the evaluated datasets.

As mentioned in the main text, the image-level AUROCc is sat-

urated on the MVTec AD textures. Since the image-level anomaly

score is computed as the maximum across the image, the result is

quite sensitive to the final smoothing of the results. Table 6 reports

the AUROCc metric for QFCA and QFCA+ at different smoothing

levels σs. In the best case (QFCA+ with σs = 2.0) the metric is very

close to 100%. To be exact, the anomalies are perfectly detected in

3 out of 5 textures (grid, leather, and wood).

S3. Evaluation on generic objects

Our method is designed to work on textures or surfaces that are

largely stationary. While that is the case, our feature preprocessing

in QFCA+ significantly improves the performance on images that

are just partly texture-like. Table 5 includes an evaluation on all ob-

jects in MVTec in a comparison with FCA. For some classes (such as

transistor) the difference between QFCA+ and FCA is rather small.

However, objects that can be characterized as two intertwined tex-

tures (such as screw and toothbrush) see large improvements since

they benefit most from our PCA-based preprocessing. Moreover, as

seen in Tab. 7, despite being designed for textures and using lim-

ited pretraining (WideResnet on ImageNet), QFCA+ outperforms

WinCLIP [JZK∗23] and is comparable to more recent VLM-based

methods.

S4. Proof of algorithm correctness

In this section, we prove the correctness of the algorithm introduced

for computing the mismatch score between a patch and a reference

histogram (Alg. 1). In this context, correctness means that the al-

gorithm is equivalent to the feature correspondence mismatch from

FCA, i.e. M(x,y;P) in [AW24b]. Specifically, the computed errors

for each bin match the errors obtained using the FCA algorithm if it

were run on the quantized values.

For simplicity, we analyze the algorithm for a single patch, as-

sume integer weights, and use the same notation as in Alg. 1. Addi-

tionally, let {Xi}
T 2

i=1,{Yi}
T 2

i=1 be the feature values of the patch and

the reference, respectively. FCA computes the mismatch score by

sorting the X and Y vectors and mapping elements of the same rank.

The error associated with each element of a patch is given by the

absolute difference to its matched value; i.e., FCAk := |XOk
−YLk

|,
where O and L are the indices of the sorted order of X and Y .

For the case where the histogram weight of a bin is one, i.e.

Pi = 1, it is easy to see that Ei = |Qi −Q j|, as per lines 6 or 10

of Alg. 1. Therefore, the error Ei corresponds to FCAk if and only

if i and j correspond to the same ordered rank. P and R repre-

sent the vectors as histograms, where the bins correspond to quan-

tiles Q, which are inherently in sorted order. It follows that i and

j track the ranks in sorted order iff at each iteration the cumu-

lative weight of the processed bins in histogram P matches the

cumulative weight in histogram R; that is, for the order statistic

k, ∑
j−1
b=1 Rb < k ≤ ∑

j
b=1 Rb and ∑

i−1
b=1 Pb < k ≤ ∑

i
b=1 Pb. Since we

process the order statistics for one bin at a time, this translates in

our algorithm to ∑
j−1
b=1 Rb < ∑

i
b=1 Pb ≤ ∑

j
b=1 Rb if the algorithm

enters the condition on line 5 and ∑
i−1
b=1 Pb < ∑

j
b=1 Rb ≤ ∑

i
b=1 Pb

otherwise.

It can be verified by induction that these identities hold. At each

iteration, the cumulative sum for both histograms is adjusted by

the same amount: the index of the smaller bin is moved forward

and the discarded weight is taken from the larger bin to mark the

transport. Since the weights are nonnegative, the new cumulative

sum is bounded by the interval defined by the bins of the other

histogram. This remark is sufficient for the case where Pi = 1; how-

ever, in practice the elements will not be unique due to quantization.

When the vectors X and Y have duplicate values, the FCA mismatch

score for these elements is ill-defined, since different sorted orders

are possible. Our QFCA algorithm alleviates this issue by defining

the mismatch score of a bin as the weighted average of the scores

pertaining to a bin. The multiplication with Pi on line 6 (and R j on

line 10, respectively) is balanced by the division by P̂i on line 15

to create this weighted average. Intuitively, in the context of FCA,

this translates to computing the mismatch scores in sorted order

as before, and then averaging the errors of elements with the same

value (because they are arbitrarily mapped to different values in the

reference).

We have thus shown that the histogram-based algorithm yields

the same mismatch scores as the standard FCA used on quantized

values. Note that this also implies that the quantized algorithm

exactly converges to the patch statistics comparison of FCA as the

number of bins goes to infinity.

2-Wasserstein distance We provide here an additional mathemat-

ical justification for the efficacy of FCA and QFCA for localizing

anomalies. Ardelean and Weyrich [AW24b] present the patch com-
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QFCA QFCA+

MVTec AD PRO AUROCs F1 AUROCc PRO AUROCs F1 AUROCc

carpet 95.54 98.38 72.43 99.64 96.72 98.77 75.75 99.48

grid 98.16 99.50 62.29 99.84 98.87 99.67 67.59 100.00

leather 98.89 99.44 65.87 99.63 99.03 99.47 65.26 99.52

tile 95.83 98.00 82.20 99.50 95.88 98.02 81.12 98.19

wood 97.24 98.27 76.59 99.30 97.37 98.22 75.65 97.63

DTD PRO AUROCs F1 AUROCc PRO AUROCs F1 AUROCc

Blotchy_099 97.21 99.42 76.21 99.63 97.22 99.13 68.82 99.94

Marbled_078 97.17 99.05 73.45 100.00 97.32 99.00 71.49 100.00

Mesh_114 94.08 97.63 63.85 95.80 96.83 98.60 66.23 97.74

Stratified_154 98.78 99.13 64.87 100.00 98.83 99.10 63.10 100.00

Woven_068 96.98 98.79 68.70 99.88 97.57 99.02 70.85 100.00

Woven_125 98.08 99.37 74.85 100.00 98.23 99.38 74.79 100.00

Fibrous_183 97.06 99.01 71.02 97.75 97.40 99.04 68.99 99.56

Matted_069 89.80 99.41 74.65 100.00 90.53 99.56 74.67 100.00

Perforated_037 94.88 96.82 66.00 98.88 96.75 97.99 67.93 99.94

Woven_001 96.70 99.30 65.04 96.00 98.57 99.69 67.53 98.38

Woven_104 90.85 97.25 66.65 95.00 93.92 98.10 68.46 98.94

Woven_127 87.23 92.55 62.31 97.11 94.90 96.05 70.60 98.11

WFT PRO AUROCs F1 AUROCc PRO AUROCs F1 AUROCc

texture_1 92.12 97.91 79.81 – 94.25 98.06 79.68 –

texture_2 86.83 98.57 77.92 – 91.73 98.95 79.73 –

Table 4: Per-texture detailed results of our method (QFCA and QFCA+).

QFCA+ FCA

MVTec AD PRO AUROCs F1 AUROCc PRO AUROCs F1 AUROCc

bottle 44.58 56.53 21.27 47.62 26.53 42.46 17.36 28.73

capsule 81.57 87.64 13.39 49.30 70.38 85.34 10.48 35.14

grid 98.87 99.67 67.59 100.00 98.07 99.46 61.62 99.84

leather 99.03 99.47 65.26 99.52 98.90 99.45 66.06 99.63

metal_nut 39.47 55.63 35.80 67.89 26.38 61.00 36.41 59.58

tile 95.88 98.02 81.12 98.19 95.41 97.84 81.70 99.36

transistor 40.95 59.72 16.65 34.92 39.13 62.35 17.63 30.42

zipper 50.55 85.61 17.09 81.20 42.17 82.60 16.21 43.96

cable 26.64 70.02 14.23 49.16 32.84 75.22 26.88 45.46

carpet 96.72 98.77 75.75 99.48 95.44 98.31 72.58 99.60

hazelnut 93.72 92.67 56.71 97.82 91.08 91.78 50.31 95.00

pill 78.14 77.02 22.17 52.48 76.08 80.84 25.62 45.39

screw 86.37 96.08 16.39 50.46 77.85 93.39 5.94 53.93

toothbrush 82.88 92.09 31.29 91.11 64.26 87.20 16.22 73.06

wood 97.37 98.22 75.65 97.63 97.18 98.22 76.34 99.30

Average 74.18 84.48 40.69 74.45 68.78 83.70 38.76 67.23

Table 5: Per-class results of our QFCA+ compared to FCA on all objects in the MVTec AD dataset.
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σs

Method 1.2 1.4 1.6 1.8 2.0

QFCA 99.83 99.83 99.82 99.82 99.80

QFCA+ 99.38 99.70 99.77 99.84 99.89

Table 6: Average image-level AUROCc on MVTec AD textures at

different levels of smoothing.

Method PRO AUROCs F1

WinCLIP [JZK∗23] 64.6 85.1 31.7

April-GAN [CHZ23] 44.0 87.6 43.3

AnoVL [DZBL23] 77.8 90.6 36.5

SDP [CZT∗24] 79.1 88.7 35.3

SDP+ [CZT∗24] 85.6 91.2 41.9

SAA [CXS∗23] 31.9 67.7 23.8

SAA+ [CXS∗23] 42.8 73.2 37.8

ClipSAM [LCY∗25] 88.3 92.3 47.8

QFCA+ (Ours) 74.2 84.5 40.7

Table 7: Comparison to VLM-based methods on all objects in

MVTec AD; metrics taken from [LCY∗25]. While our method is

specific to textures, it is on par with most VLM-based methods that

make use of significantly more pretraining as well as textual clues.

parison algorithm as an ad-hoc trick to obtain the contribution of

each element to the 1-Wasserstein distance. That being said, we

show here that using the absolute value between matching elements

in sorted order is not arbitrary, but rather it represents the magnitude

of the gradient of the squared 2-Wasserstein distance between the

two distributions.

The Wasserstein distance for distributions with dimensionality

d = 1 has the analytic solution:

Wp(X ,Y ) =

(∫ 1

0
|F−1(z)−G

−1(z)|pdz

)1/p

, (3)

where F and G are the cumulative distributions of X and Y , respec-

tively. For our empirical distributions this can be written as

Wp(X ,Y ) =

(

T 2

∑
k=0

|XOk
−YLk

|p
)1/p

. (4)

The squared 2-Wasserstein distance is then simply

W
2
2 (X ,Y ) =

T 2

∑
k=0

(XOk
−YLk

)2 , (5)

so the magnitude of the gradient of an element XOk
is given by

∣

∣

∣

∣

∣

∂W 2
2

∂XOk

∣

∣

∣

∣

∣

= 2|XOk
−YLk

|= 2 ·FCAk . (6)

Since multiplying all scores by a constant factor does not change

the anomaly localization, it follows that QFCA can be seen as

efficiently computing the gradient of the squared 2-Wasserstein

distance between all patches and the global reference.

S5. Additional Details

All time measurements of our method as well as the baselines

of FCA [AW24b], GRNR [YLC∗24], ZvM [ATO23], and April-

GAN [CHZ23] were performed using an NVIDIA RTX A5000

GPU. For the other baselines we use the runtime reported by the

authors.

For our local average pooling experiment in Figure 3 we use up-

to-date versions of the libraries. That is: Tensorflow version 2.18.0,

Pytorch version 2.6.0, and Jax version 0.5.2 .

S6. Code

The code is available at: github.com/TArdelean/QuantizedFCA.
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