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1 INTRODUCTION
The problem of detecting and localizing defects in images has been
tackled with various approaches, including traditional computer
vision techniques, as well as machine learning. Notably, most of
these efforts have been directed toward the normality-supervised
setting of this problem. That is, these algorithms assume the avail-
ability of a curated set of normal images, known to not contain
any anomalies. While this kind of data is easier to acquire than
anomaly-annotated images, it is still costly or difficult to obtain
in-domain data for certain applications.

We address the problem of anomaly detection and localization
under a training-set-free paradigm and do not require any anomaly-
free reference data. Concretely, we introduce a truly zero-shot
method that can localize anomalies in a single image of a previ-
ously unobserved texture class. Then, we develop a mechanism to
leverage additional test images, which may contain anomalies. Fur-
thermore, we extend our analysis to also include a categorization
of the anomalies in the given population through clustering. Impor-
tantly, we focus our attention on textures and texture-like images
as we develop an anomaly detection method for structural defects,
rather than logical anomalies. This poster summarizes our recent
line of research on localization and classification of anomalies in
real-world texture images [Ardelean and Weyrich 2024a,b].

2 APPROACH
Zero-shot. Our zero-shot method, named Feature Correspon-

dence Analysis (FCA) [Ardelean and Weyrich 2024b], detects anom-
alies by finding the regions in an image that break the overall
homogeneity of the texture. It is, at heart, a method for comparing
the local pixel distribution in a patch with the global distribution of
the image. Trivial distances between distributions, such as compar-
ing moments or the EMD distance between histograms [Moritz et al.
2017], generally lead to anomaly maps with low fidelity due to the
trade-off between context size and precision (Figure 1). Differently
from other stationarity measures, we compute a mismatch score for
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Figure 1: Anomaly localization: comparing FCA to his-
tograms on two synthetic examples. Hlarge andHsmall denote
histograms with a large and small patch size, respectively.
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Figure 2: Qualitative comparison between our full method,
just FCA, and prior work [Aota et al. 2023; Sohn et al. 2023].

each pixel in a patch instead of a holistic distance between the patch
and the reference distribution (global statistic). This mismatch is
computed by leveraging the fast algorithm for Wasserstein distance
between empirical distributions [Elnekave and Weiss 2022]. That
is, the elements of the distributions are sorted, creating a bijective
mapping between values with the same rank. The absolute differ-
ence between the elements put in correspondence represents their
contribution to the Wasserstein distance; we use this contribution
as the mismatching score of a pixel in the context of a given patch.
The final anomaly map is then obtained by averaging the scores
from all patches that contain a certain pixel.

Blind anomaly localization. FCA localizes anomalies with high
fidelity when applied to stationary textures. However, when the
complexity of the global distribution increases, the method strug-
gles to differentiate between genuine variance and true anomalies.
When operating on a set of images, additional information can be
extracted from this set, despite it being contaminated by anomalies.
This unsupervised learning setting (blind anomaly detection) seeks
to detect anomalies by using the common information in the given
images to cooperatively uncover the outliers.

We adapt FCA to leverage the additional unlabeled data to dis-
tinguish between the normal variation in the images and the true
anomalies. To this end, we employ a Variational Autoencoder (VAE),
trained to reconstruct all features in the input images. Thanks to
the training dynamics of the VAE, common features are recon-
structed better than rare features, which are maily generated by
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Figure 3: Qualitative evaluation of the blind localization (con-
tours) and clustering (color). For more examples, see [Arde-
lean and Weyrich 2024a].

Table 1: Ablation and quantitative comparison to the recent
baseline [Sohn et al. 2023]. PRO is a pixel-level anomaly
localization metric, whereas NMI and F1 evaluate clustering.

Method MVTec textures MTD Leaves
PRO NMI 𝐹1 PRO NMI 𝐹1 PRO NMI 𝐹1

Sohn et al. 90.84 0.67 0.71 66.51 0.18 0.35 75.25 0.46 0.63
Only FCA 96.92 0.76 0.78 72.15 0.18 0.51 48.10 0.33 0.44
FCA + CL 96.92 0.81 0.81 72.15 0.17 0.54 48.10 0.53 0.71
FCA + VAE 97.50 0.77 0.78 75.53 0.14 0.51 77.20 0.51 0.59
Ours full 97.50 0.79 0.81 75.53 0.22 0.67 77.20 0.71 0.83

anomalies. This concept has beenwidely used for stand-alone anom-
aly detection methods in a normality-supervised setting. Namely,
by taking the L1 or L2 norm of the difference between original
and reconstructed features, one directly gets an anomaly score for
each pixel location. Our algorithm goes a step further and uses not
only the magnitude of the residual features, but also their structure.
Concretely, we apply our zero-shot anomaly localization on these
residuals. The advantage of applying FCA on residuals rather than
the original features comes from the homogenization of normal
features through the VAE. This is supported by our experiments
(see Table 1 and Figure 2), which show that the most significant im-
provements can be seen on more complex, heterogeneous textures.

Clustering. The localization of anomalies already makes the pre-
dictions both explainable and more actionable. A natural step for-
ward in this direction is to further describe the discovered anomalies
by identifying semantically distinct classes. In the case where no
labels are available, this characterization can be formulated as a
clustering problem. We are the first to explicitly make the connec-
tion between blind anomaly localization and anomaly clustering,
splitting the problem in two complementary parts [Ardelean and
Weyrich 2024a]. In essence, we leverage predicted anomaly maps
to learn task-oriented features through contrastive learning.

Firstly, the predicted anomaly scores are used as weights for the
initial feature maps (extracted using a pretrained WideResnet-50)
to compute image-level descriptors, which attend to the anomalous
regions in the image. Each image is matched with its 𝑘-nearest

Anomaly type
cercospora
miner
phoma
rust
none

Anomaly type
cercospora
miner
phoma
rust
none

Figure 4: T-SNE projections of image-level descriptors; com-
paring the initial features (left) with the feature space ob-
tained through contrastive learning (right).

neighbors for positive pairs selection and a random set from the
bottom 0.5-quantile for negative pairs. Then, the mined positive
and negative pairs are used to train a small convolutional network
head on top of the initial feature extractor. The weights of this
network are optimized using a contrastive loss function [Hadsell
et al. 2006]. Finally, we recompute image-level descriptors using the
learned features and employ Ward hierarchical clustering on these
descriptors. As can bee seen in Table 1 and Figure 4, the contrastive
learning is instrumental in obtaining a good clustering. The results
of our full method are displayed in Figure 3.

3 CONCLUSION
Our work pushes the boundaries of texture analysis in the context
of anomaly detection and clustering without using annotated data
or any anomaly-free reference images. The results obtained in this
challenging scenario sets a new baseline for data-scarce applications.
Given the importance of textures to computer graphics applications,
we foresee a great potential in the context of content creation from
real-world photographs.
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