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Abstract

Anomaly detection and localization in images is a growing
field in computer vision. In this area, a seemingly under-
studied problem is anomaly clustering, i.e., identifying and
grouping different types of anomalies in a fully unsupervised
manner. In this work, we propose a novel method for clus-
tering anomalies in largely stationary images (textures) in
a blind setting. That is, the input consists of normal and
anomalous images without distinction and without labels.
What contributes to the difficulty of the task is that anoma-
lous regions are often small and may present only subtle
changes in appearance, which can be easily overshadowed
by the genuine variance in the texture. Moreover, each
anomaly type may have a complex appearance distribution.
We introduce a novel scheme for solving this task using a
combination of blind anomaly localization and contrastive
learning. By identifying the anomalous regions with high
fidelity, we can restrict our focus to those regions of in-
terest; then, contrastive learning is employed to increase
the separability of different anomaly types and reduce the
intra-class variation. Our experiments show that the pro-
posed solution yields significantly better results compared
to prior work, setting a new state of the art. Project page:
reality.tf.fau.de/pub/ardelean2024blind.html.

1. Introduction

The detection of anomalies is an important problem, found in
applications from widely different domains such as medicine,
manufacturing, security, finance, etc. The problem is of great
interest to the computer vision community as the anomalies
are often observed in images or videos. In this work, we
focus on identifying structural anomalies, generally found
in textured surfaces, rather than generic object anomalies.
Depending on the application, there are several tasks cov-
ered by the overarching title of anomaly detection, such as
image-level detection, pixel-level detection (localization),
and clustering of anomalies. These tasks can further be di-
vided depending on the level of supervision that is available.
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Figure 1. System overview. We train a VAE on features extracted
from the input set, and apply FCA [5] on the residuals to obtain
anomaly maps in a blind setting. These maps are used to mine
positive and negative pairs for contrastive learning. The resulting
improved image-level descriptors are then hierarchically clustered.

https://reality.tf.fau.de/pub/ardelean2024blind.html


Traditionally, there are three main categories: supervised,
semi-supervised, and unsupervised methods [12, 13]. Super-
vised methods assume the existence of a training dataset with
labeled anomalies, a setting resembling supervised classifi-
cation with unbalanced classes. Semi-supervised detection
of anomalies only requires a curated set of normal samples
(no anomalies) for training. Unsupervised methods do not
require any labels and do not use a separate training set,
but directly detect anomalies based on the data distribution.
This setting has also been named blind anomaly detec-
tion [50] and fully unsupervised learning [19]. Notably, a
large number of relevant works [21, 24, 31, 39], including
surveys [35, 43], use the term of unsupervised anomaly detec-
tion while referring to the second category described above.
To avoid the ambiguity regarding these terms, we refer to the
training-set-free category as blind, following [50], and use
the term normality-supervised for methods that use a curated
set of anomaly-free images.

Anomaly clustering aims to not only detect outliers but
also group the anomalies found among a set of elements into
semantically coherent clusters. Such a system could greatly
improve the interpretability of anomaly detection systems and
allow more control over the results; for example, when only
certain anomaly types are relevant for the end-application,
the others can be filtered out. We address the problem of
blind anomaly clustering in images, specifically textures,
which are (mostly) stationary. We propose to solve anomaly
clustering in two stages. Firstly, the anomalous regions are
identified regardless of the type, essentially performing blind
anomaly localization (BAL). Secondly, using contrastive
learning, we map the original images to a new feature space
where different anomaly types can more easily be separated.

In the BAL setting, the input consists of a set of images
which may or may not contain anomalies, without any labels.
Applying an existing normality-supervised method [33, 39]
would be suboptimal due to the (possibly high level of)
anomaly-contamination [19, 46]. At the same time, zero-
shot (single-image) methods such as FCA [5] and Aota et
al. [4] would not leverage the information from all images.
Therefore, we propose a novel approach specifically for BAL.
We harness the benefits of the zero-shot FCA and combine it
with a variational autoencoder (VAE) trained on the entire
input set, injecting global information in each image.

After localizing the anomalies, one can aggregate the
anomalous features and apply a classic clustering algorithm
on the pooled descriptors, such as 𝑘-means, hierarchical
clustering, spectral clustering, etc. However, we find that
due to the intrinsic variation of anomalous features, coupled
with the imperfect localizations from BAL, the anomaly
classes are hard to separate. We address this by performing
contrastive learning, mining positive and negative pairs using
the computed anomaly maps. This greatly improves the
clustering performance and increases its stability.

To summarize, our contributions are as follows:
• We are the first to make the connection between blind

anomaly localization (BAL) and anomaly clustering by
formulating the problem of anomaly clustering as a two-
stage process: BAL, followed by feature fine-tuning.

• We derive a novel solution for BAL, which applies the
recent zero-shot method Feature Correspondence Analysis
(FCA) [5] to residual maps obtained using a variational
autoencoder.

• We propose a way to fine-tune features for anomaly cluster-
ing through contrastive learning, leveraging the anomaly
maps predicted by BAL.

2. Related Work
Blind anomaly localization and clustering is a complex
problem, with strong connections to several directions of
research in computer vision. In this section, we briefly revise
the tasks adjacent to our problem formulation and how the
existing solutions relate to anomaly clustering.
Normality-supervised anomaly detection. Most of the
prominent progress in anomaly detection in images consists
of normality-supervised methods; i.e., methods which rely on
a set of normal images, used as reference to compare against
at test time. There are several classes of methods that follow
this pattern. Reconstruction-based methods generally use
autoencoders [8, 47], VAEs [3, 6, 51, 52], or GANs [2, 6, 40]
which learn to reproduce normal images. During inference,
comparing the reconstruction with the input image should
yield higher errors in anomalous regions, since the network
was not trained to reconstruct such elements. Another set
of methods relies on pretrained feature extractors, modeling
normality in different ways including feature banks [39],
per-pixel gaussian distributions [21], 𝑘-nearest neighbors
search [7, 18], etc. Modeling the features from the normal
set allows assigning anomaly scores by measuring how well
the model explains a new sample. Other approaches have
also been proven competitive, such as self-supervised learn-
ing (synthesizing artificial anomalies) [33, 49], flow-based
models [24], contrastive learning [31], etc. These methods
show impressive results on the usual benchmarks; however,
it has been shown that in general the performance degrades
significantly when the normal set is contaminated (contains
some anomalous images) [19, 46, 50].
Blind anomaly detection. The main response to the prob-
lem of anomaly contamination for normality-supervised
methods is represented by training-set refinement. SRR [46],
SROC [19], and STKD [34] present different ways to de-
tect outliers in the anomaly-contaminated training set and
eliminate them. The refined set can then be used by a
normality-supervised method to build the notion of normal-
ity. The results of these approaches have been shown for
small amounts of contamination (up to 20%), with degrading



performance for higher factors. On the other hand, our task
concerns a generic blind anomaly setting, where the number
of anomalous images can be much higher (up to 75% in
our experiments). Patel et al. [38] developed a solution for
such cases, where the ratio of anomalous samples is high.
Instead of eliminating the outlying images, only the anoma-
lous regions are masked, allowing the method to leverage
the normalcy information available in these images. Another
approach explicitly designed for blind anomaly detection was
recently proposed by Zhang et al. [50]. The method builds
on PatchCore [39], addressing the challenge of creating an
anomaly-robust feature bank. Our approach takes a different
path, i.e., combining variational feature reconstruction with
a zero-shot detection method.
Zero-shot anomaly localization A distinct category of su-
pervision in anomaly detection problems consists of zero-shot
methods. This scenario assumes that each image is analyzed
in isolation; therefore, it heavily relies on priors and/or pre-
sumed stationarity of the input image. Strong priors are
leveraged by WinCLIP [29], SAA [11], and April-GAN [15]
in the form of pretrained visual-language models, using text
prompts to identify anomalous regions. On the other hand,
the methods of Aota et al. [4] and Ardelean and Weyrich
(FCA) [5] target textured images. Here, the anomalies are
marked as the regions that break the overall homogeneity
of the image. More concretely, FCA computes the anomaly
score of a pixel by computing its contribution to the Wasser-
stein distance between the local (patch) and global (image)
distributions. These methods can theoretically be directly
applied to blind anomaly detection; however, they would
not leverage all available information, suggesting they are
suboptimal for this task.
Deep Image Clustering Consistently with prior work [32,
42], we assume that each image has only one type of anomaly.
This makes the task similar to generic image clustering, tack-
led by various methods such as IIC [30], GATCluster [36],
SCAN [44], and SPICE [37]. Nonetheless, anomaly cluster-
ing has two peculiarities which make it more challenging.
Firstly, the classes are naturally unbalanced, and we assume
no prior knowledge on how rare a specific anomaly type
is compared to other types or the normal class. Secondly,
the anomalies can be small and subtle, making it difficult to
cluster the images when approached holistically [42].
Unsupervised semantic segmentation. The combination
of clustering and localization of anomalies can also be seen
as an instance of unsupervised semantic segmentation. For
example, methods such as PiCIE [17], STEGO [26] and
HP [41] identify semantically similar regions in different
images. Our anomaly-targeted, margin-based contrastive
learning algorithm bears similarities with the correspondence
distillation formulation of Hamilton et al. [26]. However, the
method we propose is adapted to the specifics of anomaly
clustering, which gives it a performance edge.

3. Method
We propose a system for clustering anomalies as a two-stage
process. The first component performs blind anomaly local-
ization (BAL) by extending the zero-shot feature correspon-
dence analysis (FCA) algorithm of Ardelean and Weyrich [5]
to leverage the properties of reconstruction-based anomaly
detection methods. The second component refines the texture
descriptors used for clustering to make the anomalous classes
more separable. Finally, the instances are clustered using
classic feature clustering based on image-level embeddings.
An overview of the pipeline is presented in Figure 1.

3.1. Blind Anomaly Localization

The task of blind anomaly localization can be formulated
as a function that takes as input a set of images {𝐼𝑖}𝑁𝑖=1, 𝐼𝑖 ∈
R𝐻×𝑊×3 and returns an anomaly map (𝐴𝑖 ∈ R𝐻×𝑊 ) for each
image. Note that the set of images has mixed normal and
anomalous images, and no labels are available.

Applying a zero-shot method for each image in isolation
may work well for simple, stationary textures, but fails when
the normal class is more complex, so that information from
multiple images is required to determine anomalies. In order
to homogenize the distribution in the normal regions using the
available data, we employ a Variational Autoencoder (VAE)
trained to reconstruct the input. Instead of operating on
images directly, we use a feature extractor 𝐹 consisting of the
first layers of a neural network pretrained on ImageNet [22];
the variational reconstruction is performed on the extracted
features. We observe that using 1×1 convolutions is sufficient,
as the neural features already capture the local information
of the patch in the RGB image; this also allows the network
to be trained very fast. At inference, we encode the input
features (i.e., 𝜇𝑖 , 𝜎𝑖 = VAE𝐸 (𝐹 (𝐼𝑖))) and use the predicted
embedding mean (𝜇𝑖) for decoding. The residual between
the input and the reconstruction is then used as input to
FCA using the default parameters (𝜎𝑝 = 3.0 and 𝜎𝑠 = 1.0),
yielding the final Equation (1):

𝐴𝑖 = FCA(𝐹 (𝐼𝑖) − VAE𝐷 (𝜇𝑖)) . (1)

The union of the two elements is elegant and straightforward,
and it works surprisingly well in practice. In the following, we
give another intuition for the connection, and we empirically
demonstrate this synergy in the experiments section.

A prominent class of methods for normality-supervised
anomaly detection is represented by the reconstruction-based
approaches, e.g., a Variational Autoencoder trained to recon-
struct normal images. At inference time, given an anomalous
image, the network will mostly succeed in recovering nor-
mal regions. On the other hand, anomalies will not be
correctly represented by the network since they were not
observed during training. Therefore, the mismatch between
the original image and the reconstructions can be used as



an anomaly score. One can simply use the 𝐿1 or 𝐿2 norm
of the difference [6, 14], or more involved measures such
as SSIM [8], or Rec-grad [51, 52] for obtaining the final
anomaly map. As observed in [6, 38], VAE-based methods
have a certain natural robustness to anomaly contamination
and generally perform better than simpler autoencoders. This
is because the normal pixels constitute the overwhelming
majority, and the regularization of the latent space forces the
network to focus on minimizing the error on this majority.
While the magnitudes of the residuals between the input
and reconstruction can be relatively noisy [8], the structure
of the errors provides an additional discriminatory signal
for localizing the anomalies. Concretely, we observe that
identifying abnormal structures in the feature residuals is
equivalent to a zero-shot anomaly localization task where the
input consists of the difference between the original features
and the reconstruction.

3.2. Clustering

From the previous step, we now have for each image an
anomaly map 𝐴𝑖 ∈ R𝐻×𝑊 and the extracted feature map
𝐹𝑖 = 𝐹 (𝐼𝑖), 𝐹𝑖 ∈ R𝐻×𝑊×𝐶 . When performing clustering,
we use the same assumption as Sohn et al. [42] and consider
each image to subsume at most one type of anomaly. In this
case, the clustering of anomalies can be made by clustering
the respective images in the input set (with one extra cluster
for the images that do not present any anomalies). To this end,
Sohn et al. aggregate the features using the anomaly maps to
obtain one descriptor per image and then use agglomerative
clustering on the summative descriptors.

Due to the high variability in the appearance of anomalies
of the same type, it is hard to separate clusters based on
aggregate descriptors in the original space (i.e., the feature
space of the pretrained network). Therefore, we propose to
fine-tune descriptors by adding an additional 1 × 1 convo-
lutional head after the layers extracted from the pretrained
network 𝐹, which are kept frozen. The added convolutions
are trained using a contrastive learning regime as depicted in
part III of Figure 1.

To obtain positive and negative pairs for contrastive learn-
ing, we first binarize the anomaly maps using a threshold 𝑡
computed based on the distribution of the anomaly scores. In
practice, this threshold can be selected using validation im-
ages or based on additional information regarding the amount
of anomalies expected in the dataset. In our experiments,
we used a generic heuristic described in more detail in the
supplementary material, Section S4.

For an image 𝑖, let 𝑆𝑖 ∈ R𝐾𝑖×𝐶 denote the set of anomalous
features (where the anomaly value is larger than the threshold),
i.e., 𝑆𝑖 = {𝐻 (𝐹𝑖)𝑥𝑦) | 𝐴𝑥𝑦𝑖 > 𝑡}, and 𝑆𝑖 ∈ R(𝐻 ·𝑊−𝐾𝑖 )×𝐶 the
set of normal features. 𝐻 represents the added trainable layers.
One can now form positive pairs from 𝑆𝑖 × 𝑆𝑖 and 𝑆𝑖 × 𝑆𝑖 ,
as well as negative pairs from 𝑆𝑖 × 𝑆𝑖 . However, this setup

only ensures consistency between normal and anomalous
features at the level of each image and will not preserve
the relationship between different types of anomalies. To
find positive and negative pairs between different images we
first find the 𝑘-nearest neighbors of each image based on a
cumulative feature, weighted by the anomaly map, calculated
as

𝐷𝑖 =
∑︁
𝑥𝑦

(
𝐹
𝑥𝑦

𝑖

𝑒𝐴
𝑥𝑦

𝑖
𝜏−1∑

𝑥𝑦 𝑒
𝐴
𝑥𝑦

𝑖
𝜏−1

)
. (2)

Using the image descriptors {𝐷𝑖}𝑁𝑖=1, we find the 𝑘-nearest
neighbors N(𝑖) ∈ N𝑘 , and we sample 𝑘 non-neighbors
from the bottom 0.5-quantile of the distances: C(𝑖) ∈ N𝑘 .
From these image-level relations, we pool the anomalous
and normal features to obtain collective sets of neighboring
anomalies (𝑃𝑖 = 𝑆𝑖 ∪

⋃
𝑗∈N(𝑖) 𝑆 𝑗), neighboring normals

(�̄�𝑖 = 𝑆𝑖 ∪
⋃
𝑗∈N(𝑖) 𝑆 𝑗), and non-neighboring anomalies

(𝐶𝑖 =
⋃
𝑗∈C(𝑖) 𝑆 𝑗 ). We can now form more suitable positive

pairs from 𝑆𝑖 ×𝑃𝑖 and 𝑆𝑖 × �̄�𝑖 and negative pairs from 𝑆𝑖 × �̄�𝑖
and 𝑃𝑖 ×𝐶𝑖 . Finally, the described pairs are processed using
the contrastive loss formulation of Hadsell et al. [25] to
optimize 𝐻.

After training 𝐻, we obtain clusters by computing (again)
image-level descriptors as in Equation 2, but using 𝐻 (𝐹𝑖)
instead of 𝐹𝑖 directly. The descriptors are then processed by
an off-the-shelf feature-clustering method; we use agglomer-
ative clustering with Ward linkage in our experiments.

3.3. Implementation Details

The variational autoencoder uses 4 convolutional 1× 1 layers
to compute 𝜇𝑖 and 𝜎𝑖 in the encoder and contains 3 layers in
the decoder. All convolutions are followed by ReLu activa-
tions. The number of feature channels in each intermediate
layer matches the input (i.e., 512) except for the latent bottle-
neck where dimension is 128. For each instance, the input
features are rescaled between 0 and 1 as in [5]. The VAE is
trained for 10k iterations, using AdamW as an optimizer with
learning rate of 10−4 and 0.1 weight decay; the optimization
takes about one minute.

For simplicity, all images are resized to 512 × 512 before
feature extraction. Following [4, 5], we use the output of
the second convolutional block of a pretrained WideResnet-
50 [48]. The anomaly maps predicted by FCA are smoothed
using a Gaussian kernel with 𝜎 = 1.0, and the features are
smoothed with 𝜎 = 2.0 and centered to have the mean equal
0 before computing Equation (2). Similar in effect with the
average pooling in Sohn et al. [42], the blurring reduces
high-frequency noise and facilitates clustering. Following
[5], we discard the borders of the images as the anomaly
scores are not reliable near the edges.

The network 𝐻 trained using contrastive learning consists
of two 1 × 1 convolutions with 512 channels, followed by
𝐿2 normalization. The layers are trained using AdamW(lr =



Method MVTec AD textures MTD Leaves
NMI ARI 𝐹1 NMI ARI 𝐹1 NMI ARI 𝐹1

SelFormaly [32] 0.743 0.675 0.795 – – – – – –

SPICE [37] 0.268 0.079 0.174 0.028 0.014 0.309 0.351 0.272 0.429
SCAN [44] 0.277 0.153 0.335 0.071 0.029 0.282 0.394 0.356 0.526
STEGO [26] 0.389 0.271 0.459 0.056 0.111 0.586 0.055 0.021 0.344
Average [42] 0.273 0.123 0.402 0.065 0.024 0.289 0.341 0.359 0.519
Max Hausdorff [42] 0.625 0.534 0.708 0.193 0.112 0.381 0.546 0.605 0.780
Weighted Avg [42] 0.674 0.601 0.707 0.179 0.120 0.346 0.459 0.462 0.630
Ours 0.790 0.716 0.806 0.221 0.392 0.670 0.712 0.736 0.829

Table 1. Comparison between different methods applied to anomaly clustering. For all metrics a higher value is better.

5 · 10−4,weight decay = 0.01) for 10 epochs for each texture
class. We take 𝑘 = 3 neighbors and use a margin of 0.5.

The algorithm is not particularly sensitive to the afore-
mentioned arguments. The most important parameter of our
approach is the temperature 𝜏 (see Equation (2)) which is
set to 0.002 in our experiments unless noted otherwise. We
study the behaviour of this parameter in Section 4.4.

4. Experiments
To validate the utility of our contributions we compare the
proposed anomaly clustering system to the current state
of the art. We additionally assess the importance of each
component through an extensive ablation study.

4.1. Datasets

Since we are targeting anomaly clustering in textures, we use
some of the few datasets that contain largely homogeneous
materials and present various (labeled) types of anomalies.
Note that the anomaly labels are needed for evaluation but
never seen during processing. The datasets used are MVTec
AD [9, 10], magnetic tile defect (MTD) [27], and coffee
leaves dataset (Leaves) [23]. As mentioned before, this work
focuses on (mostly) textured images, therefore, for MVTec
AD we use the 5 texture classes, each with ∼ 5 anomaly
types. MTD contains 1344 images with 5 possible defects,
and Leaves includes 422 images covering 4 different kinds of
biotic stress. Similarly with Sohn et al. [42], we discard the
images that contain more than one type of anomaly. For the
Leaves dataset we work on full images and do not perform
the specific preprocessing outlined by Esgario et al. [23].

4.2. Metrics

Normalized mutual information (NMI) is a widely used
metric for evaluating clustering results. It is calculated as
the mutual information between the predicted clustering and
the ground truth labels divided by the arithmetic average
of their entropies. We also evaluate the clusters using the
adjusted Rand index (ARI) [28] and the 𝐹1 score [16]. Since

the 𝐹1 score requires direct correspondence, we compute
the optimal assignment between clusters and labels with
the Jonker-Volgenant algorithm [20] from SciPy [45]. For
evaluation, we assume the number of clusters to be known; for
an extended discussion see Section S5 in the supplementary.

4.3. Results

We compare our system with the state-of-the-art anomaly
clustering method of Sohn et al. [42], including the intro-
duced variants: Average, Maximum Hausdorff, and Weighted
Average. We additionally consider deep image clustering
methods (SCAN [44], SPICE [37]) and unsupervised seman-
tic segmentation (STEGO [26]) in the comparison. Recently,
SelFormaly [32] introduced a novel approach for solving
anomaly detection tasks in a unified manner. While the
authors also present results for anomaly clustering, we note
that their method works in a normality-supervised setting,
having a significant advantage compared to our method and
the other baselines.

Table 1 presents our main results on anomaly clustering;
the detailed, per-class scores can be found in the supple-
mentary material (Section S2). We obtain a significant
improvement in the quality of the clustering over previous
methods, agreed by all metrics. Notably, we outperform
SelFormaly [32] on MVTec textures despite using a com-
pletely unsupervised approach. Please also see Figure 2 for
a qualitative assessment. The improvement brought by our
system comes from two sources: high-fidelity blind anomaly
localization (BAL) and fine-tuned features obtained from
contrastive learning. We will analyze these contributions in
turn in the following ablative study.

BAL. We compare the proposed combination of FCA and
VAE residuals with plain zero-shot FCA [5]. The method of
Sohn et al. [42] represents the main baseline, using the alpha
values before the exponential activation (cf. Equation 5) as
anomaly scores. On MVTec AD textures we also compare to
a recent dedicated BAL method [50]; only MVTec results are
included as the source code is not currently available. To show
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Figure 2. Qualitative evaluation of blind localization and clustering of anomalies. Note that we only show a subset of each cluster; the
proportion of misclassifications reflects the true accuracy (rounded down to include more failure cases). The color of a column name
indicates the contour color associated with that anomaly type; green is reserved for the normal class (no anomaly). The contours for ‘Ours’
and ‘(Ours) w/o CL’ differ only through their color because they start from the same binary anomaly localization (our BAL).

the limitations of applying a normality-supervised method
on anomaly-contaminated data, we include two prominent
methods for anomaly detection: DRAEM [49] and CFA [31].
As this evaluation considers a binary anomaly localization,
we use the common metrics: PRO [10] with a false positive
rate threshold of 0.3, AUROCp (pixel level), and AUROCi
(image level). The image-level anomaly score is computed
as the maximum over pixel-level scores.

The results in Table 2 suggest that FCA performs better
than the soft weights from Sohn et al. on mostly homogeneous
textures (MVTec, MTD) but the performance degrades on
more complex classes (Leaves). Our approach improves
upon FCA in all cases and surpasses the baseline [42] by
a large margin, especially on the size-sensitive localization
metric PRO [10]. We also demonstrate the benefit of our
approach qualitatively in Figure 3. Our results show better
localization through a reduced number of false positives.
Improved descriptors. Intuitively, a finer anomaly local-
ization should improve the downstream performance of the
clustering, since it depends on the image-level descriptors
(Equation (2)), computed using the anomaly maps 𝐴𝑖 . We

verify this by ablating both the VAE and our contrastive
learning (CL). Ablating CL amounts to using the descriptors
𝐷𝑖 directly as instance embeddings, similarly to the weighted
aggregation from Sohn et al. [42]. VAE ablation is performed
by applying contrastive learning using the anomaly scores
obtained from zero-shot FCA directly.

Table 3 shows that both components contribute to the
performance of our approach. As the textures in MVTec AD
are more homogeneous, the benefit of our VAE-based BAL
is smaller, and it does not improve the downstream clustering
performance on this dataset. Nevertheless, its significance is
clearly observed in the results on MTD and Leaves. To show
that our improvements are orthogonal to the final feature-
clustering method used, we also present this ablation in
the supplementary material (Table 6) when using 𝑘-means
instead of Ward clustering.

We visualize the effect of our anomaly-targeted contrastive
learning in Figure 4.
Feature-clustering methods. The last step of our algo-
rithm consists in an off-the-shelf clustering method based
on image-level descriptors. It can be observed in Table 4



MVTec AD textures PRO AUROCp AUROCi

ILTM† [38] 79.04 85.38 –
DRAEM [49] 31.12 57.08 73.04
CFA [31] 92.51 97.27 88.54
Sohn et al. [42] 90.84 96.61 98.69
Zhang et al. [50] 91.26 96.80 97.58
FCA [5] 96.92 98.74 99.85
FCA+VAE (ours) 97.50 99.02 99.93

MTD PRO AUROCp AUROCi

DRAEM [49] 22.80 54.22 54.98
CFA [31] 65.27 73.86 62.49
Sohn et al. [42] 66.51 72.86 77.00
FCA [5] 72.15 74.48 80.29
FCA+VAE (ours) 75.53 75.32 83.87

Leaves PRO AUROCp AUROCi

DRAEM [49] 33.53 76.91 51.34
CFA [31] 76.92 97.15 81.51
Sohn et al. [42] 75.25 97.15 92.02
FCA [5] 48.10 88.50 62.05
FCA+VAE (ours) 77.20 97.62 90.62

Table 2. Binary anomaly detection and localization metrics in a blind
setting (mixed normal and anomalous data with no annotations).
For all metrics a higher value is better.
† ILTM [38] results differ slightly in the evaluation protocol.

that agglomerative/hierarchical clustering with Ward linkage
performs best, with 𝑘-means being a close second. Generally,
the results obtained with Ward clustering are better com-
pared to 𝑘-means over different methods [42] and parameters.
However, as we show in Section 4.4, the variance is also
larger, with small differences in features yielding consider-
able different clusterings. Ideally, the features optimized by
our method should make the different anomaly types more
easily separable so that the clustering algorithm used would
have limited influence on the results. Indeed, in Figure 5 we
show that our contrastive learning has the added benefit of
making the algorithm more stable.

Speed assessment Despite being composed of several com-
ponents and requiring two stages of neural network training,
our method is relatively fast. Concretely, for the MTD dataset
which contains 1344 images, the entire process takes a total
of 14 minutes (7.5% for VAE training, 66.5% for contrastive
learning, and 26% for FCA, image-level descriptors calcu-
lations and agglomerative clustering). For reference, the
method of Sohn et al. [42] takes 30 minutes due to a time
complexity quadratic in the number of images.

Application domain We design our approach specifically
for textures, a significant category which occurs often in civil-
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Figure 3. Qualitative comparison of anomaly maps produced by
different approaches to BAL. The images’ borders are cropped out.

structures or industrial inspection. For an extended discussion
on the scope of our method see S7 in the supplementary.

4.4. Sensitivity Analysis

We analyze the performance of our algorithm under different
values of 𝜏 (see Equation (2)), the single most important
parameter of the method. A small value of 𝜏 focuses the
weights on a single element in the feature maps, the one with
the highest anomaly score. On the other hand, a large 𝜏 will
push the weights toward a uniform distribution, minimizing
the effect of using anomaly scores to focus on the regions of
interest. Figure 5 shows that different datasets have different
optimal values for 𝜏. Nevertheless, the range 1.5 · 10−3 to
3.0 · 10−3 seems broadly acceptable for all datasets.

We note here that the improvement added by contrastive
learning is visible for various values of 𝜏. Furthermore, the
variance of the NMI metric is greatly reduced, as well as the
gap between agglomerative (Ward) clustering and 𝑘-means,
which speaks to the stability and robustness of our algorithm.



Method MVTec AD textures MTD Leaves
NMI ARI 𝐹1 NMI ARI 𝐹1 NMI ARI 𝐹1

Ours w/o VAE, CL 0.756 0.682 0.781 0.176 0.166 0.507 0.333 0.235 0.443
Ours w/o VAE 0.807 0.733 0.811 0.167 0.214 0.539 0.528 0.507 0.706
Ours w/o CL 0.769 0.693 0.775 0.142 0.161 0.513 0.512 0.461 0.588
Ours 0.790 0.716 0.806 0.221 0.392 0.670 0.712 0.736 0.829

Table 3. Ablation study of the improved anomaly localization (VAE) and contrastive
learning (CL). Details in the main text.

NMI MVTec MTD Leaves

𝑘-means 0.778 0.211 0.689
Agglomerative-Ward 0.790 0.221 0.712
Gaussian Mixture 0.750 0.157 0.724
Spectral 0.757 0.189 0.629

Table 4. Comparison in terms of NMI of
different feature-clustering methods applied to
the descriptors produced by our method.

Anomaly type
cercospora
miner
phoma
rust
none

(a) Descriptors with contrastive learning

Anomaly type
cercospora
miner
phoma
rust
none

(b) Descriptors without contrastive learning

Figure 4. Visualization of the initial image-level descriptors compared to the descriptors computed after contrastive learning. The vectors are
projected to two dimensions using t-SNE.

Figure 5. Analysis of clustering performance in terms of NMI for varying values of 𝜏. Contrastive learning improves stability.

5. Conclusion

In this work, we introduce a novel pipeline for clustering
anomalies in textured surfaces. Firstly, we extend the state-
of-the-art zero-shot method of Ardelean and Weyrich [5] for
anomaly localization, and enable incorporating additional
information from multiple images. This vastly improves the
performance on more complex, non-stationary images, and
establishes a new state of the art for the blind anomaly local-
ization task. Secondly, we leverage the predicted anomaly
maps to mine positive and negative pairs and employ con-

trastive learning. This improves the descriptiveness of the
neural features, increasing the separability of the anomaly
classes. We validate the contributions extensively by compar-
ing with prior art on three different datasets, and we include
a comprehensive ablation study that clarifies the role of each
component of our method.
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