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Abstract
Portrait viewpoint and illumination editing is an important problem with several applications in VR/AR, movies, and photog-
raphy. Comprehensive knowledge of geometry and illumination is critical for obtaining photorealistic results. Currentmethods
are unable to explicitly model in 3D while handling both viewpoint and illumination editing from a single image. In this
paper, we propose VoRF, a novel approach that can take even a single portrait image as input and relight human heads under
novel illuminations that can be viewed from arbitrary viewpoints. VoRF represents a human head as a continuous volumetric
field and learns a prior model of human heads using a coordinate-based MLP with individual latent spaces for identity and
illumination. The prior model is learned in an auto-decoder manner over a diverse class of head shapes and appearances,
allowing VoRF to generalize to novel test identities from a single input image. Additionally, VoRF has a reflectance MLP that
uses the intermediate features of the prior model for rendering One-Light-at-A-Time (OLAT) images under novel views. We
synthesize novel illuminations by combining these OLAT images with target environment maps. Qualitative and quantitative
evaluations demonstrate the effectiveness of VoRF for relighting and novel view synthesis, even when applied to unseen
subjects under uncontrolled illumination. This work is an extension of Rao et al. (VoRF: Volumetric Relightable Faces 2022).
We provide extensive evaluation and ablative studies of our model and also provide an application, where any face can be
relighted using textual input.
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1 Introduction

Portrait editing has a wide variety of applications in virtual
reality, movies, gaming, photography, teleconferencing, etc.
Synthesizing photorealistic novel illuminations and view-
points of human heads from a monocular image or a few
images is still an open challenge.
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While there has been a lot of work in photorealistic facial
editing (Yamaguchi et al., 2018; Meka et al., 2019; Bi et
al., 2021; R et al., 2021b; Pandey et al., 2021; Zhou et al.,
2019; Wang et al., 2020; Sun et al., 2019), these methods are
usually restricted by sophisticated multi-view input (Meka et
al., 2019; Bi et al., 2021; Azinovic et al., 2023; Lattas et al.,
2022a), inability to edit the full face region (R et al., 2021b;
Yamaguchi et al., 2018; Lattas et al., 2022b; Azinovic et al.,
2023; Han et al., 2023; Lattas et al., 2022a) or pure relighting
capability without viewpoint editing (Pandey et al., 2021;
Wang et al., 2020; Sun et al., 2019; Zhou et al., 2019).

Some recent efforts (R et al., 2021a; Abdal et al., 2021)
have shown the ability to edit portrait lighting and viewpoint
simultaneously without sophisticated input, while they still
suffer from geometric distortion during multi-view synthesis
as they rely on a 2D representation.

Recently, NeRF (Mildenhall et al., 2020) has proven a
powerful 3D representation that is capable of producingnovel
views at an unprecedented level of photorealism (Mildenhall
et al., 2020). NeRF has been applied to tasks like human body
synthesis (Su et al., 2021; Liu et al., 2021), scene relight-
ing (Boss et al., 2021; Zhang et al., 2021c; Srinivasan et al.,
2021), image compositing (Niemeyer & Geiger, 2021; Yang
et al., 2021) and others (Tewari et al., 2022). et al. intro-
ducedNeural Light-transport Field (NeLF) (Sun et al., 2021),
a NeRF-based approach for facial relighting and viewpoint
synthesis that predicts the light-transport field in 3D space
and generalizes to unseen identities. However, their method
struggles to learn from sparse viewpoints and requires accu-
rate geometry for training. In addition, they need ≥ 5 views
of the input face during testing to avoid strong artifacts.

In this article, we propose a new method that takes a sin-
gle portrait image as input for synthesizing novel lighting
conditions and views. We utilize a NeRF-based volumet-
ric representation and a large-scale multi-view lightstage
dataset(Weyrich et al., 2006) to build a space of faces (geome-
try and appearance) in an auto-decoder fashion using anMLP
network, that we call the Face Prior Network. This network
provides a suitable space to fit any test identity. In addition,
our Reflectance Network takes a feature vector from the Face
Prior Network as well as the direction of a point light source
as input, to synthesize the corresponding “One-Light-at-A-
Time” (OLAT) image. This network is supervised using a
lightstage dataset (Weyrich et al., 2006) that captures all
aspects of complex lighting effects like self-shadows, diffuse
lighting, specularity, sub-surface scattering and higher order
inter-reflections. Using OLATs has been shown to improve
the quality of relighting (Meka et al., 2019; R et al., 2021b)
without assuming a BRDF model or explicit priors. After
training, a test identity can be relit by first regressing the cor-
responding OLAT images for the desired novel viewpoint,
which are then linearly combined with any target environ-
ment map to synthesize a result (Debevec et al., 2000). In

Sect. 3 we show that this principle is indeed compatible
with NeRF’s volumetric rendering model (Mildenhall et al.,
2020). Our comparisons to previous methods show that our
approach produces novel views that are significantly bet-
ter than those of SOTA methods like PhotoApp (R et al.,
2021a). Furthermore, our results are significantly more con-
sistent with the input than those of NeLF (Sun et al., 2021).
Our method can operate directly on a monocular image and
outperforms NeLF even with 3 input views.

This article extends VoRF (Rao et al., 2022). In particular,
we show an application in which any face can be relit using
textual input andwe provide an extensive study on the impact
of design choices, such as the dimentionality of the latent
space, the number of training identities, network depth, and
theHDR loss function.We are also going to release the code 1

of our implementation.
To summarize, we make the following contributions: (1)

We present a NeRF-based approach for full-head relighting
that can take a single input image and produces relit results
that can be observed fromarbitrary viewpoints. (2)Wedesign
a dedicated Reflectance Network that is built over the Face
Prior Network that allows our method to learn self-shadows,
specularities, sub-surface scattering, and higher order inter-
reflections through a lightstage dataset supervision. (3) VoRF
is additionally able to synthesize One-Light-at-A-Time 3D
volume for any given light direction, even though we learn
from a dataset that has a limited number of light sources.
(4) We demonstrate the use case of relighting any input face
using textual input and also provide an exhaustive evaluation
of our model.

2 RelatedWork

The literature on portrait editing is vast and here we discuss
only methods that are related to relighting. OLAT images
generated by a lightstage are popular for capturing the face
reflectance details, as pioneered by the seminal work of
Debevec et al. (2000). Here, it was shown that such OLAT
images can be used as an illumination basis to express an
arbitrary environment map through a linear operation. The
highly photorealistic relighting achieved by this formulation
encouraged further research. This includes methods dedi-
cated for image sequence processing (Zhang et al., 2021a; Bi
et al., 2021), shadow removal (Zhang et al., 2020), capturing
high-quality reflectance priorities frommonocular images (R
et al., 2021b; Yamaguchi et al., 2018) among others (Wang
et al., 2020; Meka et al., 2019; Sun et al., 2020; Zhang et al.,
2021b; Pandey et al., 2021). Among these, R et al. (2021b) is
the closest in problem setting and approach. R et al. (2021b)
can regress OLATs for any camera position given a monocu-

1 Code: https://github.com/prraoo/VoRF/.
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a) Input view) b) Novel views c) OLAT images d) Relit novel views

Fig. 1 We present VoRF, a learning framework that synthesizes novel
views and relighting under any lighting conditions given a single image
or a few posed images. VoRF has explicit control over the direction of a
point light source and that allows the rendering of a basis of one-light-

at-a-time (OLAT) images (c). Finally, given an environment map (see d,
insets) VoRF can relight the input (d) by linearly combining the OLAT
images

lar image. But since they rely on the 3DMMmodel, they can
only relight the face interior. The majority of these methods
can edit the face interior only (R et al., 2021b; Yamaguchi et
al., 2018; Wang et al., 2020) and do not model face exteriors
such as hair, VoRF adopts a different strategy. We do not rely
on face templates; rather, our approach utilizes the NeRF to
learn a3D radiancefieldundermulti-view image supervision.
Thismethod allows us tomodel the entire head, including the
hair. Further, methods (Zhang et al., 2020; Meka et al., 2019;
Sun et al., 2020; Zhang et al., 2021b; Pandey et al., 2021;
Zhang et al., 2021a) can edit the lighting only while keep-
ing the original camera viewpoint unchanged. The method
proposed by Bi et al. (2021) can edit the camera viewpoint
and lighting of the full head simultaneously. But, it is person-
specific.

Instead of using a lightstage OLAT data, some meth-
ods employ illumination models and/or train with synthetic
data (Shu et al., 2017; Sengupta et al., 2018; Zhou et al.,
2019;Chandran et al., 2022; Lattas et al., 2022b).While these
approaches can generalize to unseen identities, they can be
limited in terms of photorealism and the overall quality (Shu
et al., 2017; Sengupta et al., 2018; Zhou et al., 2019) and
some are constrained to editing only the face interior (Lattas
et al., 2022b). Recent efforts leverage the generative capabili-
ties of the StyleGAN face model (Karras et al., 2020) to learn
from in-the-wild data in a completely self-supervised man-
ner (Tewari et al., 2020; Abdal et al., 2021). More recently,

PhotoApp (R et al., 2021a) combined the strength of both
lightstage OLAT data and the generative model StyleGAN.
Such formulation has two main advantages. First, it achieves
strong identity generalization even when training with as few
as just 3 identities. Second, it is capable of relighting the
full head and editing the camera viewpoint simultaneously.
However, as StyleGAN is a 2D generative model, PhotoApp
suffers to generate view consistent results in 3D. In contrast,
our method learns the prior space in volumetric represen-
tation, which generate significantly better view-consistent
results. StyleGAN embedding can also change the original
identity, leading to unacceptable results. Our method, on the
other hand, maintains the integrity of the original identity.

Recently, a multitude of NeRF-based methodologies for
general scene relighting have been proposed (Srinivasan et
al., 2021; Zhang et al., 2021c; Boss et al., 2021; Martin-
Brualla et al., 2021; Rudnev et al., 2022).WhileNeRV (Srini-
vasan et al., 2021) necessitates scene illumination as an input,
other approaches such as NeRFactor (Zhang et al., 2021c),
NeRD (Boss et al., 2021), NeRFW (Martin-Brualla et al.,
2021), and NeRF-OSR (Rudnev et al., 2022) can operate
with unknown input scene illumination. Notably, the illu-
mination space of NeRFW (Martin-Brualla et al., 2021) is
not grounded in physically meaningful semantic parameters.
Furthermore, all these aforementioned NeRF-based meth-
ods are scene-specific and require multiple images of the
scene during the testing phase. In contrast, our approach
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differs from traditional NeRF by being capable of represent-
ing multiple scenes (or subjects), made feasible through the
utilization of latent conditioning, as inspired by Park et al.
(2019). This advantageous approach provides us the benefits
of both NeRF, by relieving us from the necessity of explicit
head geometry for facemodeling, and latent conditioning, by
offering global robustness during the testing phase tomanage
single image inputs.

Single scene relighting methods such as NeRFW (Martin-
Brualla et al., 2021) use latent embeddings to manipulate
illumination, while our proposed approach makes use of
HDRenvironmentmaps. Thesemaps capture real-world illu-
mination, considering each pixel of the environment as a
source of light. This results in a lighting environment that is
“physically-based”. Further, these environmentmaps are also
“semantically meaningful” because they represent a com-
prehensible physical reality. The illumination information
they provide is grounded in real-world lighting conditions,
unlike abstract latent embeddings. This not only makes the
maps more intuitively understandable but also ensures that
the lighting conditions they provide are relevant and realistic.
The closest approach to our problem setting is NeLF (Sun et
al., 2021). Based on NeRF, it has a good 3D understanding of
the scene. It learns the volume density and light transport for
each point in 3D space. NeLF adopts a pixelNeRF-inspired
architecture where the density and color values rely heavily
on localized image features. As a result, their method strug-
gles to capture global cues and sometimes results in holes in
the volume. Their method also requires high-quality geome-
try for supervision during training and thus fails to learn from
sparse viewpoints. It also needs at least 5 viewpoints of the
input face during the test otherwise significant artifacts are
produced.

Contrary to existing methods, we train a face prior that
encodes a joint distribution of identity and illumination,
enabling our model, VoRF, to adapt and generalize to unseen
subjects and uncontrolled illumination. Generally speak-
ing, human faces follow certain patterns or distributions-for
instance, the standard placement of facial features such as
two eyes, a nose, and a mouth. As we train the Face Prior
Network on a variety of subjects, we instill this inductive bias
into the model. Given that our scope is restricted to faces,
this bias proves to be very beneficial. Additionally, the use
of latent codes to represent identity and illumination allows
our model to rely on global cues.

This capability permits the synthesis of novel views and
relighting effects. Our technique places a strong emphasis on
maintaining the integrity of facial geometry during viewpoint
interpolation and is capable of relighting the entire head.

A notable feature is its ability to operate using as few as
a single monocular image during testing. Additionally, our
method presents innovative latent interpolation capabilities,

which allow for the rendering of unseen identities and illu-
mination conditions during the testing phase.

3 Face Reflectance Fields

Obtaining complex lighting conditions by linearly combining
OLAT images according to environment maps is a principle
that is well-studied in the literature (Debevec et al., 2000). In
this section,we show that this principle is actually compatible
with NeRF’s volumetric rendering model (Mildenhall et al.,
2020).

Debevec et al. (2000) argue that under the assumption
that all sources of incident light are sufficiently far away
from the face, we can describe lighting conditions by a func-
tion L inc(ω), that only depends on a direction ω ∈ S from
which radiance is incident andmaps this direction to the total
amount radiance reaching the face from that direction. S is
the set of all directions of incoming radiance.

We introduce a combination of a volume density function
(Mildenhall et al., 2020) and a reflectance field (Debevec et
al., 2000), that we call volumetric reflectance field: A vol-
umetric reflectance field is a pair (σ, R), where the volume
density function σ : R3 → R maps scene points to density
values and the function R(ω, x,d) indicates the fraction of
L inc(ω) that is reflected from point x in the direction d.

The additive property of light transport allows us to
describe the total amount Lout(x,d) of radiance reflected out
of point x in the direction d as

Lout(x,d) :=
∫

ω∈S
R(ω, x,d) · L inc(ω) dω (1)

We assume that image formation follows a perceptive
camera model, as described by Mildenhall et al. (2020), i.e.
we assume a ray ro,d(t) = o+ td being shot through a cam-
era pixel into the scene, and describe the amount of radiance
accumulated along this ray as

L(r) :=
tf∫

tn

T (t) · σ(r(t)) · Lout(r(t), d) dt

with T (t) := exp

⎛
⎝−

t∫

tn

σ(r(s))ds

⎞
⎠

(2)

where tn, tf are the bounds within which the entire face is
contained.

In order to bridge the gap between theOLAT conditions of
the dataset and real-world lighting conditions, we discretize
the dense set of incident light directions S to a finite set I ,
with one direction i ∈ I per OLAT light sourcewhere Si ⊆ S
represents a subset. We now approximate the following:
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Lout(x,d) ≈
∑
i∈I

R(ωi , x,d) · L inc(i) (3)

where ωi is the incident light direction of OLAT light source
i and L inc(i) := ∫

ω∈Si L inc(ω) is the discretized version of
L inc.
The property of OLATs that allow to compose complex light-
ing conditions can now be derived as follows:

Under OLAT Conditions, i.e. when the face is illuminated
from only one single light source, there exists a single i ∈ I
that contributes some radiance Li := L inc(i) (i.e. only lamp
i is turned on), while for all j �= i we have L inc( j) = 0.
Thus, for a given ray r with origin o and direction d, the
accumulated radiance L(r) is approximated by

L(i, r) :=
tf∫

tn

T (t) · σ(r(t)) · R(ωi , r(t),d) · Li dt (4)

Under Non-OLAT Conditions, all we know is that ∀i ∈ I
there must exist some factor fi , s.t. L inc(i) = fi · Li . With
the abbreviation a(t) := T (t) · σ(r(t)) we can thus equate

L(r) ≈
tf∫

tn

a(t) ·
∑
i∈I

R(ωi , r(t),d) · fi · Li dt

=
∑
i∈I

fi ·
tf∫

tn

a(t) · R(ωi , r(t),d) · Li dt

=
∑
i∈I

fi · L(i, r),

(5)

where L(i, r) is the amount of radiance that, originating from
light source i , emerges from the scene along ray r .

Equation5 shows that under the stated assumptions we
can render the face under any given lighting specification
( fi )i∈I just as a linear combination of OLAT images. The
errors caused by the approximations (≈) in the derivations
above reduce as we increase the number of OLAT directions
that are used to discretize S. Similar equations are known in
the literature (Debevec et al., 2000), showing that under the
stated assumptions we can render the face under any given
lighting specification ( fi )i∈I just as a linear combination of
OLAT images.

OurNeRF-based (Mildenhall et al., 2020)model in Sect. 4
learns functions of the form F�(x,d) = (Lout(x,d), σ (x)),
based on latent codes for the facial identity and lighting con-
ditions, making Eq.2 computationally tractable. To train our
face prior network (see Sect. 4) and to evaluate our method,
we use HDR environment maps from the Laval Outdoor
dataset (Hold-Geoffroy et al., 2019) and the Laval Indoor
HDR dataset (Gardner et al., 2017) to obtain coefficients fi .
This allows us to turn the OLAT basis images into depictions

Fig. 2 Our Face Prior Network learns to decode latent codes z j to
estimate radiance and volume density for each point in 3D space. Our
Reflectance Network learns to synthesize OLAT images of the face
(Color figure online)

of faces under real-world lighting conditions and we gener-
ate 600 relit images for each subject. Refer to Sect. 7.4 for
more details.

4 Method

We address the problem of simultaneous portrait view syn-
thesis and relighting. Given a small set of N ≥ 1 input
images along with their camera parameters, we build a Face
Prior Network(P) and a Reflectance Network(R) utilizing
NeRF-based representation. Firstly, the P is modeled in
an auto-decoder fashion to learn a prior over human heads
under various illumination conditions and this formulation
allows VoRF to generalize to novel test identities. Further-
more, to model face reflectance that can re-illuminate a face
for several viewpoints, we design a R that learns to predict
OLAT images. Using Eq.5, we linearly combine theseOLAT
images with HDR environment maps to render novel views
of a given face, under new lighting conditions. An overview
of our method can be found in Fig. 2.

4.1 Learning Face Priors

Neural Radiance Fields (Mildenhall et al., 2020) learns a
coordinate-based representation of each scene by mapping
3D coordinates x ∈ R

3 and direction d ∈ S2 to the densi-
ties and radiance values. However, NeRF by design is able
to optimize a single scene at a time. To combat this and
obtain a distribution over the entire space of faces and illu-
mination conditions, we use an auto-decoder formulation.
More specifically, we first prepare a dataset by combining a
set of environment maps with OLAT images acquired from
lightstage resulting in J combinations. For each combination
j ∈ J, we obtain image C j and a corresponding latent code
z j . The latent code z j is partitioned into identity and illumi-

123



International Journal of Computer Vision

nation components as zidj and zenvj respectively. We initialize
the latent codes from a multivariate normal distribution and
observe that separating the components individually leads to
faster convergence during the training process (see Sect. 7.4).
We design the Face Prior Network to take the latent code z j
alongwith x, d as inputs and predict radiance c as well as vol-
ume density σ for every point in 3D space. We represent the
Face Prior Network as P�P (z j , x,d) = (c, σ ). Following
NeRF, the network weights�P along with the latent codes z
are optimized jointly to regress the color values with a mean
squared objective function as follows:

LC :=
∑
j∈J

‖Ĉ j − C j‖22 (6)

where Ĉ j is the image obtained by volume rendering based
on P�P (z j , . , . ).

Drawing inspiration from (Park et al., 2019), we initialize
the latent codes to be derived from a zero-mean multivariate
Gaussian. This prior enforces that identity and illumination
codes should residewithin a compactmanifold. Such a notion
ensures that latent codes are concentrated, leading to smooth
interpolation and convergence to an optimal solution. We
maintain this by implementing an L2 regularization Eq.7 to
prevent the distribution from growing arbitrarily large. Based
on our empirical results, this simple constraint proved to be
sufficient in learning a useful latent distribution.

Lreg =
∑
j∈J

‖zidj ‖22 + ‖zenvj ‖22 (7)

4.2 Synthesizing NewOLAT Images

To model a reflectance field of the faces, we propose a
Reflectance Network(R) that learns a volumetric reflectance
field by utilizing the σ predictions provided by P (see
Sect. 3). For anOLAT light source i , we consider the incident
light direction ωi as an input to the R. To synthesize OLAT
images, we design theR based on NeRF and directly regress
the radiance values o.
Rmodels face reflectance by taking into account the incom-
ing light direction and features derived from theP . As theωi

is already known, the network needs information related to
face geometry tomodel the reflectance function andhence the
outgoing light. By design, we predict density from the output
of the 9th layer of the P . Hence to ensure reliable geometry
information is passed on to the R we extract features from
this layer.

We also provide the viewing directiond as input to capture
view-dependent effects. Thus, Reflectance Network learns a
functionR�R , parameterized by�R and is given as follows:
R�R(ωi ,FP (z j , x,d),d) = o. To synthesize an OLAT
image Ô j,i along the light direction i for j ∈ J, we combine o

with the volume density σ predicted from P . The dotted line
in Fig. 2, connecting density (σ ) from the P to the volume
rendering block of the R, demonstrates this connection.
This design choice can be intuitively understood. Regard-
less of the specific OLAT lighting condition, the subject, and
therefore, the face geometry, remains constant. We enforce
this fixed geometry by ensuring theR uses the density infor-
mation from the previous stage. We’ve found in our work
that this approach facilitates faster learning. This is because
it allows theR to differentiate between shadow and geometry
within darker regions of the OLAT images thereby avoiding
shape-illumination ambiguity. �R is optimized byminimiz-
ing HDR-based loss inspired by Mildenhall et al. (2022) and
S is a stop gradient function:

LO :=
∑
j∈J

∥∥∥∥∥
Ô j,i − O j,i

S(Ô j,i ) + ε

∥∥∥∥∥
2

2

(8)

where O j,i is the ground truth OLAT image from the
dataset that is used in the construction of C j . This loss func-
tion is especially suited for handling the semi-dark lighting
conditions ofOLAT images. OurHDR lightstage dataset pre-
dominantly consists of dark regions and utilizing an L2 loss
function results in muddy artifacts in those regions (Milden-
hall et al., 2022). In contrast, the HDR-Loss divides the
absolute error by the brightness of the ground truth image giv-
ing a higher weight value for darker regions. Thus, utilizing
this loss function helps to recover high contrast differences
in dark regions.

4.3 Training

NeRF-based methods typically require dense camera views
of the scene to faithfully represent the scene without cloudy
artifacts. As our dataset has a limited number of views, we
make use of hard-loss (Rebain et al., 2022) to avoid cloudy
artifacts. We consider, as in previous work, the accumulation
weightswr ,k that are computed during volume rendering, for
a given ray r (see (Rebain et al., 2022)). Imposing P(wr ,k) ∝
e−|wr ,k |+e−|1−wr ,k | for the probabilities of these weights, we
minimize

Lh =
∑
r ,k

− log(P(wr ,k)) (9)

which encourages the density functions implemented by P
to produce hard transitions. We apply this loss during the
synthesis of both Ĉ j and Ô j,i , which helps to avoid cloud
artifacts surrounding the face.

Training Scheme After the initial stage of training that
ensures a reasonable level of convergence of P , we proceed
to jointly optimize both theP and theR. Our overall training
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loss function now is L = αLC + βLO + γLreg + δLh with
hyper weights α, β, γ, δ.

It’s noteworthy from our experiments that we didn’t need
to adjust the hyperparameters α, γ , and δ during this phase
of joint training. They remained consistent, indicating the
robustness of our model and training process.

4.4 Test

Following the training phase, where our proposed model
learns from 302 subjects, each captured under 600 ran-
dom natural illuminations, the model learns to differentiate
between identity and illumination effectively. This distinc-
tion is robust enough to generalize to a test subject. During
the test-time optimization, theP assists in distilling identity-
specific and illumination-specific details into zid and zenv

respectively.
Having trained the networks on a large-scale dataset, we

operate under the assumption that the test subject’s iden-
tity and illumination are close to the training distribution.
Therefore, the features extracted from the P facilitate theR
in modeling the reflectance of the test subject and predicting
One-Light-at-A-Time (OLAT) images. It is important to note
that our R does not directly depend on zenv to model face
reflectance. Instead, it primarily relies on identity-specific
geometric details, encoded in zid , to model the reflectance
function.

Fig. 3 To reconstruct an unseen test face, we optimize latent code z and
fine-tune the Face Prior Network, We can relight the reconstructed face
by having the Reflectance Network produce a basis of OLAT images
(step 2), that we linearly combine into any desired lighting condition.
In this figure, MLP’s with the same label: “R-MLP” share their weights

Given a small set of N ≥ 1 input images of an unseen
identity under unseen lighting conditions, we fit z and fine-
tune �P by minimizing (using backpropagation)

Lg := αLC + γLreg + δLh (10)

where the input images now take the place of theC that were
used during training. Note, that first, we update only z for
10,000 iterations (learning rate 1×10−3), to make sure that it
lieswellwithin the learned prior distribution. Then, assuming
that the fitting step has converged, continue to jointly update
z and �P for 3,000 iterations (learning rate 3 × 10−6). We
demonstrate the significance of this two-step approach as an
ablation study in the Sect. 7.1.

With z and �P optimized in this way (part 1© in Fig. 3),
we can already render the face under novel views. In order
to be able to also change lighting (part 2© in Fig. 3), we use
R to render an OLAT basis that by Eq. (5) we can use to
synthesize any given lighting conditions.

5 Lightstage Dataset

We utilize a lightstage dataset (Weyrich et al., 2006) of
353 identities, illuminated by 150 point light sources and
captured by 16 cameras. The light sources are distributed
uniformly on a sphere centered around the face of the subject.
For every subject, each camera captures 150 images (1 per
light source). All the images are captured with the subject
showing a neutral expression with their eyes closed. While
capturing each frame, the light sources were turned on one at
a time, thus generating one-light-at-a-time (OLAT) images.
Figure 4 gives an impression of the dataset.

5.1 Lightstage Test Dataset

For experiments that require a ground-truth reference, we
created such a reference by combining lightstage images
according to different environment maps:We randomly sam-

Fig. 4 We use a light stage dataset (Weyrich et al., 2006) that provides
150 different lighting conditions (a), 16 camera angles (b), and 353
subjects (c). We brightened the images here, for better visualization
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pled 10 unseen identities from the lightstage dataset and
synthesized naturally lit images using 10 randomly chosen
unseen HDR environment maps, from the Laval Outdoor
dataset (Hold-Geoffroy et al., 2019) and the Laval Indoor
HDR dataset (Gardner et al., 2017). For all quantitative and
qualitative experiments, we evaluate only the held-out views.
For instance, given that the lightstage dataset has a total of
16 camera viewpoints, an evaluation method that takes three
input views would be evaluated on the remaining 13 held-out
views.

6 Results

We evaluate our method qualitatively and quantitatively to
demonstrate the efficacy of our method using our lightstage
dataset, see Sect. 6.1. Additionally, we qualitatively evaluate
our method on H3DS (Ramon et al., 2021), a naturally lit
multi-view dataset.

To the best of our knowledge, NeLF and VoRF were
among the first 3D methodologies capable of generaliz-
able, simultaneous viewpoint and illumination editing for full
human heads using just images. Moreover, IBRNet (Wang et
al., 2021) is a recognized state-of-the-art method for view
synthesis that can generalize across multiple scenes, mak-
ing it a relevant comparison point. Following NeLF we use a
combination of IBRNet andSIPR (Sun et al., 2019) for simul-
taneous view synthesis and relighting. Finally, PhotoApp (R
et al., 2021a) utilizes the 2D StyleGAN latent space (Karras
et al., 2020) and learns to edit the illumination and camera

viewpoint in this space. In summary, we compare against
three state-of-the-art methods: (1) NeLF (2) IBRNet + SIPR,
and (3) PhotoApp.

To accurately evaluate the effectiveness of our proposed
approach, it is critical to compare it with the state-of-the-
art methods using the same dataset for both quantitative and
qualitative assessments. Hence, for a fair comparison, we
retrain NeLF, IBRNet, SIPR, and PhotoApp with our light-
stage dataset. All the methods are retrained as suggested in
the original works. Further, we discussed with the authors of
NeLF and PhotoApp to validate our findings and ensure the
correctness of our reimplementation. The authors corrobo-
rated our findings, confirming their consistency and accuracy.
In light of the lack of existing open-source multi-view light-
stage datasets and global latent code-based generalizable
NeRFs, we maintain that the comparison is fair and appro-
priate.

Finally, we perform ablation studies on the various design
choices of our framework and discuss their significance in
the Sects. 7 and 8.

6.1 View Synthesis and Relighting

In this section we present the results for view synthesis and
relighting to demonstrate that our method can synthesize
novel lighting conditions of the subject at novel viewpoints.

Figure 5 shows novel view synthesis and relighting pro-
duced by our technique. Here, we present results with single
input view (top) and two input views (bottom). We observe
that our method produces photorealistic renderings that are

Fig. 5 Novel view synthesis + relighting on unseen identities from the H3DS (Ramon et al., 2021) dataset. We show results obtained by using
a single image (top) and two images (bottom). Target environment maps are shown in the insets. Our technique performs photorealistic novel
view-synthesis and relighting
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view-consistent. Our method maintains the integrity of the
input identity and recovers the full head, including hair. It also
maintains the integrity of the facial geometry while relight-
ing at extreme views (third and fourth row, last column in
Fig. 5).

OurReflectance Network has the ability to synthesize sub-
jects corresponding to arbitrary light directions and enable us
to relight them using any HDR environment maps following
Eq.5. To achieve this, our technique predicts the 150 OLAT
images as the light basis of the lightstage. In Sect. 2 we show
that through our rendered OLATs we are able to reproduce
view-dependent effects, specular highlights and shadows.

6.2 Comparison to RelatedMethods

Wequantitatively and qualitatively compare against the state-
of-the-art view synthesis and relighting methods. All the
quantitative evaluations are on the lightstage test set as
detailed in Sect. 5.1. We summarize our quantitative evalu-
ations in Table 1 in terms of average PSNR and SSIM over
all the test images.

First, we compare our method for the view-synthesis task
with a different number of input views. Next, with the same

test setup we evaluate for the task of simultaneous view syn-
thesis and relighting. For both tasks, we observe that our
method convincingly outperforms NeLF, IBRNet, and IBR-
Net + SIPR.

We posit that the limitations of other methods, such as
NeLF and IBRNet, are not due to the nature of the train-
ing dataset itself but rather due to their design. Both NeLF
and IBRNet are reliant on local features for reasoning about
geometry, which demands 3–5 images with viewpoints not
too far apart during evaluation. In contrast, our approach
relies on global features and can operate effectively with a
single input view.

As a direct consequence, neither NeLF nor IBRNet
can handle single-input images which limits their applica-
tion to multi-view setups. High evaluation scores indicate
that our method recovers decent geometry and synthesizes
better-quality relighting. These results can be more easily
understood in Fig. 6, where we clearly observe our render-
ings match the ground truth more closely than the baseline
methods. While IBRNet and NeLF have different design
principles relative to VoRF, our comparison is intended to
highlight the inherent design limitations of the methods,
which rely on local image features for geometry inference

Table 1 Comparing against NeLF (Sun et al., 2021) (requires at least 5 input views), IBRNet (Wang et al., 2021) and SIPR (Sun et al., 2019) in
view synthesis and relighting

View synthesis View synthesis and relighting

NeLF IBRNet Ours NeLF IBRNet+SIPR Ours

Input PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

5-views 22.01 0.80 24.38 0.82 27.45 0.84 21.34 0.79 19.63 0.75 24.16 0.81

3-views 20.57 0.75 22.0 0.76 26.67 0.82 19.72 0.75 18.38 0.73 22.80 0.76

2-views 19.63 0.70 20.34 0.71 25.44 0.79 19.06 0.69 17.01 0.71 22.15 0.74

1-view N/A N/A N/A N/A 22.49 0.77 N/A N/A N/A N/A 20.21 0.69

Our technique outperforms related methods regardless of the number of input views (see bold)

Fig. 6 A sample result on the
lightstage test set, with ground
truth. Our technique produces
novel view synthesis and
relighting that clearly
outperform NeLF (Sun et al.,
2021) and IBRNet (Wang et al.,
2021) + SIPR (Sun et al., 2019)
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Fig. 7 Comparison of our
method and NeLF (Sun et al.,
2021) on the H3DS (Ramon et
al., 2021) dataset for
simultaneous novel view
synthesis and relighting. Our
technique outperforms NeLF in
terms of relighting quality,
especially at views that are far
from the training set

Fig. 8 Comparison of PhotoApp (R et al., 2021a) (top row) and our
(middle row) method for simultaneous view synthesis and relighting
on the lightstage test set with single view input. PhotoApp suffers from
strong identity alternations, pose inaccuracies, and view-inconsistent
lighting. In contrast, our method produces more view-consistent and
visually pleasing results, closer to the ground truth (bottom row)

and thus are significantly dependent on dense multi-view
inputs during testing for unseen subjects. We argue that
these limitations are inherent in any method that employs
local-image-aligned CNN features to learn a NeRF repre-
sentation and are not a failure due to the nature of the
training dataset. In fact, our reimplementations all the base-
lines show convergence during training with our lightstage
dataset. Additionally, In light of the lack of existing global
latent code-based NeRF methods that can generalize to new
scenes, we chose IBRNet as an additional benchmark for our
evaluations. The aim is not to discredit other methods but
to provide a more holistic understanding of the trade-offs
involved in different approaches to the challenging problem
of simultaneous viewpoint and illumination editing.

We additionally compare against NeLF on H3DS dataset
(see Fig. 7) where our approach clearly performs better.
We argue this is due to NeLF’s inability to recover decent
geometry from sparse views. Likewise, IBRNet fails to con-
struct multi-view consistent geometry under sparse views.
Further with IBRNet+SIPR, we observe that SIPR depends
on the viewpoint, which breaks down the multi-view con-
sistent relighting. Finally, we compare against PhotoApp in
Fig. 8. PhotoApp inherits the limitations of the StyleGAN
space, specifically, the inversion step which modifies the
input identity. Such modifications lead to highly inconsis-
tent results limiting the application of PhotoApp. In contrast,
our approach produces view-consistent results that resemble
ground truth.

7 Ablations

Our results in Sect. 6 demonstrate that our method outper-
forms existing state-of-the-art approaches. In this section, we
further evaluate the design choices.

7.1 Significance of Two-Stage Optimization

We investigate the efficacy of our two-stage optimization
process in reconstructing a novel test identity for the task
of novel view synthesis. At test time, our optimization pro-
cess consists of two stages: fitting the latent code ztest to
the test subject and a subsequent fine-tuning process where
we jointly optimize ztest and the weights of network P , i.e.,
�P , to refine the reconstruction. We perform the fitting pro-
cess for 10,000 iterations with a learning rate of 1 × 10−3

to ensure that ztest lies in the learned face prior distribution.
After achieving convergence, we reduce the learning rate to
1 × 10−6 and jointly optimize ztest and �P for 3000 itera-
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Table 2 Omitting the
fine-tuning stage of our
optimization process at test time
(see Sect. 7.1) leads to
significantly lower scores (“Fit
Only”)

View synthesis View synthesis + Relighting

Fit Only Single z Full Model w/o LO w/o R Full model

PSNR 22.39 24.53 26.67 20.71 20.81 22.80

SSIM 0.71 0.82 0.82 0.61 0.72 0.76

We evaluate the two latent space design choices (“Single z”).We observe that using a disentangled latent space
design (see Sect. 7.4) leads to improved performance, mainly attributed to a better face prior representation
that helps in generalization. Our evaluations show that using LO instead of MSE loss (“w/o LO”) to supervise
HDR improves the performance of our method (see bold). We quantitatively demonstrate the significance
Reflectance Network (“w/o R”). Clearly having a dedicated Reflectance Network improves the relighting
quality

Fig. 9 Performing the two-step optimization improves the overall qual-
ity by recovering identity-specific high-frequency details. We show
results from a novel viewpoint

Fig. 10 Impact ofLO.Weobserve thatwithoutLO the relighting quality
is poorer due to deterioration in the OLATs predicted by Reflectance
Network

tions. We do not modify the weights of R in either stage of
optimization.

To assess the impact of this design choice on novel view
synthesis, we compare the performance of Full Model (Fit +
FineTune) to that of Fit only on our lightstage test dataset, as
shown in Table 2. Our results demonstrate that the two-stage
optimization process leads to superior performance. Specif-
ically, in Fig. 9, we observe that the fitting stage recovers
an approximate face geometry, while the fine-tuning stage
restores identity-specific fine details to the reconstruction.

In conclusion, our results demonstrate that the two-stage
optimization process yields improved performance, outper-
forming the Fit only baseline on our lightstage test dataset.

Fig. 11 We compare the design choice Disentangled Latent code (i.e.
separate latent codes for identity and illumination) to the alternative
Single Latent code (i.e. one latent code per combination of identity and
illumination), by evaluating for the task of view synthesis on our light-
stage dataset. The disentangled version leads to better reconstructions

7.2 Significance ofLO

NeRF in the dark (Mildenhall et al., 2022) proposes a modi-
fied MSE loss function (Sect. 4.2) that is better suited for
training in HDR space. We utilize this loss function (as
denoted by LO) for HDR OLAT supervision during training
of our Reflectance Network. Table 2 indicates that the use of
a naive MSE loss instead of LO results in poorer relighting
quality. This is attributed to the deterioration inOLATquality
as MSE is not suitable for supervision in HDR space.

7.3 Significance of the Reflectance Network

We investigate the significance of the Reflectance Network
in our proposed framework for the task of simultaneous view
synthesis and relighting portraits. In this ablation study, we
compare the performance of using onlyP with our proposed
framework involving both P and R. We initialize zenv from
an environment map, while zid is initialized from a latent
embedding, following the method of our original design.
Despite the difference in initialization, the optimization pro-
cess applied to these latent vectors remains the same when
fitting the model to an unseen subject.

By directly feeding the environment map into the model,
we hypothesize that the network learns to parse and encode
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Fig. 12 Left: Performing the two-step optimization improves the over-
all quality during view-synthesis. Right: Removing the Reflectance
Network (“w/o R”) leads to a clear loss in quality during relighting

scene illumination from zenv directly, while identity-specific
information is learned through the optimization process.Dur-
ing the training of the P , we expose each subject to 600
different illuminations, some of which are repeated across
multiple subjects, allowing the network to learn the disen-
tanglement of identity and illumination.

To perform viewpoint editing and relighting using onlyP ,
we modify the network architecture slightly. Instead of using
the illumination latent zenv, we directly input the downsam-
pled HDR environment map and train P . This allows for a
one-to-one comparison with our full model involving bothP
and R. To fit an unseen identity during testing, we initialize
the zenv with the environment map estimated from SIPR (Sun
et al., 2020) trained on our lightstage dataset, followed by our
two-step optimization process to reconstruct the unseen sub-
ject.

Our quantitative evaluations in Table 2 demonstrate that
incorporating a dedicatedR for relighting improves the over-
all performance significantly. As shown in Fig. 12, using only
P fails to capture the environment illumination conditions
completely. In contrast, relighting using OLATs obtained
fromR closely matches the ground truth lighting condition,
thereby validating our design choice.

7.4 Latent Space Design

The process of disentangling identity (zid ) and environment
illumination (zenv) is executed in a data-driven approach.
Leveraging our OLAT lightstage, we generate a range of
lighting scenarios by combining these OLAT images with
HDR environment maps. This allows us to synthesize natu-
ral illumination conditions for the subjects of the lightstage.
For each subject, we create 600 unique illumination scenar-
ios by randomly choosing from a set of 2000 indoor (Gardner
et al., 2017) and outdoor (Hold-Geoffroy et al., 2019) envi-
ronment maps and combining them with the subject’s OLAT
images. This gives us a collection of images depicting a single
person under various illuminations, which we encode using
a combination of zid and 600 different zenv values. This

Fig. 13 In the disentangled latent design, we store one zid per subject
and one zenv per illumination condition, amounting to 902 unique latent
code

principle is then extended to all the training subjects, each
illuminated under 600 random lighting conditions.

It’s worth noting that within these 600 random illumina-
tions, several lighting conditions are repeated acrossmultiple
subjects. As a result, we have multiple subjects sharing the
same zenv . When we train the P as an auto-decoder, we
sample unique identity and illumination latent codes. This
enables us to learn a disentangled representation of identity
and illumination, with subjects under the same illumination
sharing the same zenv .

The primary benefit of this disentanglement is that it
allows the extension of NeRF to handle a multitude of
subjects and illuminations by utilizing latent condition-
ing. More specifically, the P can discern and accurately
model details specific to both illumination and identity,
such as face geometry. On the other hand, the R is solely
responsible for modeling the face’s reflectance properties
through One-Light-at-A-Time (OLAT) images. It’s well-
established in computer graphics literature that precise
modeling of reflectance requires a comprehensive under-
standing of geometry. While we do not explicitly condition
the Reflectance Network with zi , we hypothesize that a dis-
entangled latent space P provides the necessary accurate
facial geometry features for the effective modeling of face
reflectance.

Another benefit of this disentanglement includes an effi-
cient, shared latent space representation. Our approach uses
separate latent codes for identity and illumination. During
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Fig. 14 We relight each subject with 600 random environment maps.
Thus naively mapping a single code for every combination of identity
and lighting would lead to 181,200 unique latent codes

training, we store one zid per subject and one zenv per illu-
mination condition, amounting to 902 (302 zid + 600 zenv)

unique codes as shown in Fig. 13. Each identity code receives
supervision under different lighting conditions. Similarly,
each illumination code receives supervision from various
subjects.

In contrast, if a single code was used for each combination
of identity and lighting condition,wewould need to supervise
181,200 ( 302 zid × 600 zenv) unique latent codes. Codes
representing the same subject under different illuminations
would not be supervised jointly anymore. To investigate this,
we compare a “disentangled” model (i.e. 900 latent vectors)
to one that uses one code per combination (i.e. 181,200 latent
vectors). After training both models for an equal number
of iterations, we tabulate our findings in Table 2: Having a
single latent code for each identity and illumination leads
to a combinatorial explosion of latent parameters, making
it difficult to learn a good face prior. Figure 11 shows that
using separate latent codes leads to better reconstructions of
unseen subjects.

8 Parameter Study

In this section, we discuss important parameters that influ-
ence our proposed method.

Table 3 Influence of latent
space size

View synthesis

PSNR SSIM

z = 16 22.73 0.57

z = 128 25.19 0.69

z = 256 25.44 0.80

z = 512 26.67 0.82

The table showcases the effect
of varying the dimensionality of
the latent space on the quality of
novel view synthesis with three
input views: Smaller latent space
sizes are inadequate to represent
both the identity and illumina-
tion information during testing.
We find z = 512 to be optimal
(indicated in bold)

Fig. 15 Impact of latent space size on novel view synthesis with three
input views. The results indicate that small latent space sizes are inade-
quate for representing the identity and illumination information during
testing

8.1 Latent Space Dimensionality

Our analysis, detailed in Sect. 7.4, underscores that our latent
space representation, denoted as z j , adeptly captures disen-
tangled identity and illumination information. However, we
discovered that this encoding demands a specific number of
latent space dimensions. After conducting a series of qualita-
tive and quantitative experiments, we established that a latent
dimensionality of 512 provides optimal results, as presented
in Table 3 and Fig. 15. Larger dimensionality for z j pri-
marily inflates memory demands, while smaller ones prove
to be insufficient in faithfully modeling both identity and
illumination aspects. Therefore, balancing between memory
considerations and the quality of results, we have set the
optimal dimensionality of z j to 512. This space is equally
apportioned between identity and illumination components,
with dimensions allocated as 256 for zidj and the remaining
256 for zenvj .

8.2 Reflectance Network Depth

The reflectance field of faces is modeled through OLATs by
the Reflectance Network. Therefore, the network must have
sufficient capacity to predict OLATs for any input ωi . We
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Table 4 We summarize the
impact on generalization with
training identities

View Synthesis

PSNR SSIM

50 IDs 25.42 0.81

100 IDs 26.34 0.81

300 IDs 26.67 0.82

We observe that as few as 50 sub-
jects are sufficient to generalize
to test subjects.
Best results are obtainedwith 300
training subjects (see bold)

Table 5 Reducing the depth of Reflectance Network hurts the scores
for simultaneous relighting and novel view synthesis

View Synthesis + Relighting

PSNR SSIM

R depth = 2 22.27 0.70

R depth = 4 22.58 0.74

R depth = 8 22.79 0.76

Best results obtained with depth = 8 (shown in bold)

therefore investigate the impact of the depth of the reflectance
network, evaluating networks with depths of 2, 4, and 8. Our
results, summarized inTable 5, show that shallownetworks (2
and 4 layers) are inadequate for learning a high-qualityOLAT
representation, as evidenced by lower PSNR and SSIM val-
ues. This is further demonstrated through qualitative results,
presented in Fig. 17.

8.3 Number of Training Identities

The Face Prior Network learns a distribution of faces cap-
tured under natural illuminations. In order to generalize to
unseen identities, the network must be trained on a diverse
set of identities. To determine the minimum number of train-
ing samples required for effective generalization, we trained
multiple Face Prior Network models with 50 and 100 light-
stage subjects and compared them to our finalized model,
which was trained with 300 lightstage subjects. Surprisingly,
we found that our method achieved comparable performance
with as few as 50 training subjects, as demonstrated in
Table 4. Even qualitative results showed very little variation
between different models, as shown in Fig. 16.

8.4 Significance of Number of OLATs

In this section, we examine the significance of the quality of
relighting by utilizing different numbers of OLAT configura-
tions: 50, 100, and 150 OLATs. We conduct evaluations for
simultaneous view synthesis and relighting.

Fig. 16 Evenwhenwe train ourmethod ononly 50 light stage identities,
it produces good quality novel views on this unseen test subject

Fig. 17 Reducing the depth of our Reflectance Network leads loss of
fine-scale details and visible artifacts in the geometry (see right eye-
brow)

Table 6 Influence of number of OLATs for the task of simultaneous
relighting and view-synthesis

View Synthesis + Relighting

PSNR SSIM

50 OLATs 19.70 0.72

100 OLATs 21.22 0.73

150 OLATs 22.80 0.76

Using all 150 OLATs gives the best results. In general, we observe that
the quality of relighting improves with the increasing number of OLATs

Fig. 18 We show the significance of the number of OLATs (n) on
final relighting. During simultaneous view synthesis and relighting, we
observe that with fewer OLATs, the Reflectance Network struggles to
accurately relight the environment illumination. Hence, using all the
150 OLATs of the lightstage dataset gives the closest resemblance to
the ground truth

Since the original lightstage dataset contains 150 OLATs,
we uniformly sample from the original configuration to
select 50 and 100 OLAT configurations. Next, we train three
different Reflectance Network models with various OLAT
configurations for the same number of iterations. We sum-
marize quantitative evaluations in Table 6 and observe that
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Fig. 19 Relighting with text prompts. The top row shows the environ-
ment maps predicted by Text2Light. We use these maps to relight an
unseen subject with a single input view. The text prompts used are a A
quiet, peaceful countryside with rolling hills and a bright blue sky. b

Inside a church with yellow windows. c A rocky coastline with crashing
waves and a lighthouse in the distance. d A serene, tranquil beach with
soft sand and crystal-clear water

the quality of relighting increases with the increase in the
number OLATs. This is distinctively clear from the Fig. 18,
as the Reflectance Network trained with 150 OLATs shows
better results in comparison. We reason that an increase in
the number of OLATs leads to a better approximation of the
environment illumination and as a consequence, it improves
the quality of relighting. In summary, we conclude that a
higher number of OLATs improves the quality of relighting.
In this work, we are restricted to 150 OLATs since it is the
capacity of the lightstage dataset available to us.

9 Application

This section presents an application for relighting using text-
based prompts. We utilize Text2Light (Chen et al., 2022) to
generate HDR environment maps based on textual input. To
produce relit images, we combine the downsampled envi-
ronment maps with the OLATs predicted by our method.
Figure 19 displays some relighting results achieved with this
approach.

10 Limitations

Our proposed method generates high-quality photorealistic
renderings, but it still has some limitations. In particular, we
present the results of our approach on the FFHQ (Karras et
al., 2021) and CelebA (Liu et al., 2015) datasets in Fig. 20.
Although our model was trained on the lightstage dataset
with subjects exhibiting closed eyes and neutral expressions,
it can handle novel view synthesis with open eyes and natural
expressions due to the fine-tuning of the Face Prior Net-
work during testing. We show in Fig. 20 that our method

Fig. 20 Given single input view fromCelebA (top) andFFHQ(bottom).
Although our method works well for novel view synthesis, it struggles
to synthesize eyes and facial expressions during relighting

Fig. 21 Our method produces good relighting and view synthesis using
from 3, 2, or even 1 input view

preserves the mouth and eye shape during relighting, but
it cannot synthesize their colors or texture. We argue that
this is not a limitation of our approach but of the lightstage
dataset. Lastly, under a monocular setting, our approach can
sometimes generate regions that do not exist in reality. For
instance, in Fig. 21 in the case of single input, hair is synthe-
sized for the bald person. Such performance is expected due
to insufficient information from a single view.
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11 Conclusion

We have presented an approach for editing light and view-
point of human heads even with a single image as input.
Based on neural radiance fields (Mildenhall et al., 2020),
our method represents human heads as a continuous volu-
metric field with disentangled latent spaces for identity and
illumination. Our method is designed to first learn a face
prior model in an auto-decoder manner over a diverse class
of heads. Further, followed by training a reflectance MLP
that predicts One-Light- at-A-Time (OLAT) images at every
point in 3D, parameterized by point light directionwhich can
be combined to produce a target lighting. Quantitative and
qualitative evaluations show that our results are photorealis-
tic, view-consistent, and outperform existing state-of-the-art
works.
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Appendix A

A.1 Image-Based Relighting

The process of combining One-Light-at-A-Time (OLAT)
images with High Dynamic Range (HDR) environment
maps to simulate various illumination conditions is a well-
established technique in the field of computer graphics, with
roots dating back to the early 2000 (Debevec et al., 2000).

This method provides a straightforward and effective way to
generate realistic lighting effects and is particularly useful
for rendering 3D models in various lighting conditions.

OLAT images are photos of the subject takenwith lighting
coming from a single direction at a time. When these images
are taken frommultiple directions, they form a detailed light-
ing profile of the subject from all angles.

HDR environment maps, on the other hand, represent a
panoramic image of an environment that encodes the bright-
ness of the light coming from every direction. Every pixel in
thesemaps is equivalent to a light source and hencewemodel
light coming from all directions of a sphere. These maps can
capture the nuances of complex lighting conditions, includ-
ing everything from the color of ambient light to the intensity
of direct sunlight.

To combine an OLAT image with a target environment
map, we first align the lighting direction in the OLAT image
with the corresponding direction in the environment map.
We then use the color and intensity values from the envi-
ronment map to adjust the lighting in the OLAT image,
effectively "relighting" the subject as if it were in the envi-
ronment depicted by the map.

By repeating this process for OLAT images taken from
multiple lighting directions and combining the results, we
can create a single image of the subject as it would appear
under the lighting conditions represented by the environment
map. This technique enables realistic, data-driven lighting
simulation from any viewpoint, which is essential for our
work in portrait viewpoint and illumination editing.

A.2 Multiple Light Sources

Real-world scenarios frequently involvemultiple light sources.
To reflect this complexity, our One-Light-at-A-Time (OLAT)
based relighting method is designed to accommodate multi-
ple light sources. The key advantage here is that our method
neither requires explicit knowledge of the number of light
sources, nor their precise positions,making it robust and flex-
ible for diverse lighting conditions

In our proposed method, during the training phase, we
re-illuminate our subjects using both indoor and outdoor
environment maps, which naturally involve multiple light
sources. This capability extends to our testing setting as well,
and our results, especially those using FFHQ and CelebA
datasets, demonstrate our model’s effectiveness under con-
ditions of multiple unknown light sources.

However, when it comes to modeling face reflectance, we
follow the principle laid out by Debevec et al. (2000), which
suggests that to accurately model face reflectance, it is essen-
tial to illuminate the face with a single light source. This
allows us to generate a reflectancemap based on the direction
of incoming light, which forms the basis of our Reflectance
Network design.
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Fig. 22 We visualize the importance of the hard loss Lh on the final
results. Here, we show results from the view synthesis task. We use a
default value of 0.1 for the hard loss. Removing the hard loss (Lh = 0)
produces significant cloudy artifacts as shownby the red arrows.Adding
the hard loss (Lh = 0.1) forces the volume to be more constrained
around the head and thus removes such cloudy artifacts

Fig. 23 We visualize the impact of different values for the hard loss
Lh . The default value of the hard loss used in our experiments is 0.1.
This figure shows that using an over-emphasized value of 10 leads to
strong artifacts

Introducing multiple light sources at this stage would
violate the necessary conditions for modeling reflectance,
thereby disrupting the design principle. Nonetheless, this
limitation does not prevent our method from effectively deal-
ing with multiple light sources in real-world settings. We can
re-illuminate the face to mimic the effects of multiple light
sources by combining the predicted OLAT images with suit-
able environment maps. Therefore, our approach remains
practical and applicable under conditions of multiple light
sources.

Appendix B

B.1 Reducing Cloudy Artifacts

The background or boundary artifacts observed in the exper-
imental figures are attributed to floating artifacts present
within the NeRF volume. These artifacts are common in
NeRF, especially due to inaccuracies in density values.
During the training process of NeRF, color prediction is
conducted by aggregating the sample points densities. Some-
times, regions that should be empty end up with non-zero
density values, leading to inaccurate color values. These inac-
curacies become particularly evident when we render images
from novel viewpoints, as illustrated in our experimental fig-
ures.

Table 7 Impact of the hard loss
Lh on novel view synthesis on
the lightstage test set

PSNR SSIM

Lh = 0.1 26.67 0.82

Lh = 0 25.65 0.78

Lh = 10 19.81 0.64

Our default value of 0.1 for
the hard loss produces the best
results (indicated in bold)

We address this issue by striving to improve the density
distribution through the use of Lh . We further investigate the
importance of the hard lossLh . This loss constraints accumu-
lation weightswr ,k to be sparse (Rebain et al., 2022), thereby
encouraging the face geometry to approximate a surface. This
measure prevents cloudy artifacts around the face as shown
in Fig. 22 (see red arrows). In our main experiments, we
use a default value of 0.1 for the hard loss. Figure 23 shows
that using an over-emphasized value of 10 for the hard loss
leads to severe artifacts. In Table 7 we examine the impor-
tance of the hard loss using quantitative evaluations against
groundtruth. Here, we evaluate the lightstage test set. As

Fig. 24 Using the Reflectance Network, we can synthesize OLAT
images for an unseen identity. Our method captures view-dependent
effects as well as accurate shadows and the result closely matches the
ground truth

Fig. 25 OLAT predictions of our method for the test subjects from the
H3DS dataset. We show results with a single view as input (top), two
views as input (middle) and three views as input (bottom).We render the
predictions from different viewpoints. The OLAT predictions capture
important illumination effects such as specularities and hard shadows
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expected, completely removing the hard loss leads to a strong
drop in the PSNR and SSIM, as opposed to using it with
the default value of 0.1. However, using an over-emphasized
value of 10 leads to very poor performance. Finally, we want
to point out that even though we significantly reduce the
cloudy artifacts on the face region, sparse inputs make it hard
to completely get rid of cloudy artifacts as seen in Fig. 5.
We believe this could be an interesting direction to explore
in the future.

Appendix C

C.1 OLAT Predicitons

Figures 24 and 25 demonstrates One-Light-At-A-Time
(OLAT) images produced by our method on the unseen sub-
jects from the lightstage and H3DS datasets respectively.
We show results using different numbers of input views and
render the OLATs from different viewpoints. The predicted
OLATs capture important illumination effects and details
such as hard shadows and specularities.
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