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Abstract

We propose a novel method for Zero-Shot Anomaly Local-
ization that leverages a bidirectional mapping derived from
the 1-dimensional Wasserstein Distance. The proposed ap-
proach allows pinpointing the anomalous regions in a texture
with increased precision by aggregating the contribution of
a pixel to the errors of all nearby patches. We validate our
solution on several datasets and obtain more than a 40%
reduction in error over the previous state of the art on the
MVTec AD dataset in a zero-shot setting.

1. Introduction

Anomaly Detection (AD) refers to discerning between
elements that abide by a standard of normality and those
which do not. Humans are generally able to perform this
distinction without the need for an explicit guideline for the
standard of normality simply by comparing them to items that
agree to the standard [41]. Even further, we can often �nd
anomalous regions from visual imagery without previous
knowledge of how a certain object or material should look,
by simply pinpointing what stands out in a single, isolated
sample [28]. This motivates the search for an automatic
system able to perform this task,i.e., zero-shot anomaly
localization (ZSAL).

Anomaly detection and localization has a wide range of
applications. Automatically �nding defects during manufac-
turing, identifying forgeries, detecting situations that require
attention in medical imaging, and discovering inaccuracies
in industrial machines are just a few of the domains where an
anomaly detection system could bring considerable bene�ts.

The computer vision community has lately shown in-
creased interest in solving the problem of anomaly detection
and localization, encouraged by the success of deep learning
methods on various tasks. The primary employed strategy is
unsupervised learning, modeling normality from a collection
of unblemished items. This alleviates the need for labeled
anomalous data at training time, which can be di�cult to

Figure 1: Anomaly localization.Left: input texture;right:
anomaly map.

acquire. However, in most existing systems the need for
numerous normal samples still remains, and only recently
has the more challenging task of few-shot and even zero-shot
AL started to be addressed.

We develop a new system designed speci�cally for
anomaly localization that works in a zero-shot setting, identi-
fying the parts that break the homogeneity of a single textured
sample (Figure1). Our main contribution is a novel method
for comparing the statistics between di�erent patches in an
image or feature map. To quantify the normality of a pixel
location one could trivially compute the average of the nearby
features and compare them to a global descriptor, however, as
we show, the errors obtained by this method are too coarse for
a pixel-level localization of anomalies. We analyze di�erent
methods for comparing the local statistics of a patch to a
reference and show that one can use a bidirectional mapping
that implicitly results from the Wasserstein distance to more
precisely identify the o�ending pixels. This insight is the
key element of our Feature Correspondance Analysis (FCA).

2. Related Work

The problem of anomaly detection can be posed for vari-
ous types of data such as weather records [42], stock market
and �nancial transactions [1], acoustic monitoring [16], video
surveillance [24], medical imaging [20], manufacturing in-
spection [22, 26], etc. In this work, we address the detection
of anomalies in images, more exactly detecting anomalous
regions in otherwise homogeneous or stationary textures.
This can be formulated as a multi-class segmentation and
classi�cation of anomalous pixels [11, 31], or in a simpler
setting, as a binary separation between normal and anoma-
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lous regions, as in [15, 17, 25, 34, 43, 46]. We focus on
the latter, usually referred to as anomaly localization (AL)
despite dealing with pixel-level segmentation (as opposed to
localization understood in the context of object detection).
AL can be considered a superclass of the anomaly detec-
tion task/classi�cation over images, as an image label can be
simply computed as the maximum of pixel-wise anomaly pre-
dictions [7]. Therefore, AL is more challenging and, for most
purposes, more useful compared to image-level classi�cation,
making the result explainable and actionable [41].

In this section, we brie�y address the most relevant meth-
ods and refer readers to a survey [27, 41] for a broader
insight into anomaly localization literature. Most of the
early machine learning methods for anomaly detection
are reconstruction-based [41], using a (variational) autoen-
coder [3, 10, 44], or a generative adversarial network (GAN)
[2, 5, 35] to learn to synthesize normal images. At infer-
ence, reconstruction errors reveal anomalies. These methods
are intuitive and provide reasonable results on simple tex-
tures given enough normal samples; however, they do not
incorporate any priors.

The evolution of AL methods, especially based on deep
learning, has greatly accelerated with the introduction of the
MVTec AD [8] dataset, which still is thede factobenchmark-
ing standard. In the extended version of the MVTec AD
paper [7] the authors compare several existing approaches
including their own method, Uninformed Students [9], which
tries to distill a larger descriptive teacher network into an
ensemble of students on normal data only. At inference time,
inconsistencies in embeddings from the students and the
teacher indicate anomalies.

Uninformed Students is an example of an embedding-
based approach. This class of methods generally relies on
deep features extracted with the help of a larger network,
pretrained on vast amounts of data, that serves as a prior.
SPADE [15] demonstrates the e�ectiveness of neural features,
surpassing previous methods without requiring a training
stage. Features from a frozen Convolutional Neural Network
(CNN), pretrained for classi�cation, are used to �nd the
nearest neighbors within the normal images database and
pixel-level correspondences for localization of anomalies.
PaDiM [17] uses neural features to characterize each pixel
location. The features across the set of normal images are
modeled as a multivariate Gaussian allowing for fast anomaly
localization at inference using the Mahalanobis distance
[29]. Similarly, PatchCore [33] uses extracted features, but
compared to PaDiM it is less reliant on image alignment,
creating a single memory bank accessible to all patches.
Additionally, coreset reduction is used to limit the size of
the memory bank and to retain a low computational cost.
PatchCore also shows better performance in a few-shot (or
low-shot [17]) setting compared to SPADE and PaDiM.

Few-shot anomaly detection was recently explicitly ad-

dressed with methods such as normalizing �ows [34], hi-
erarchical generative models [37], and feature registration
[23]. These methods, however, rely on data augmentation
which is problem speci�c and may require domain knowledge.
Moreover, as observed in [4], they are not signi�cantly better
compared to, for example, PatchCore [33] which scales better
with the number of samples.

Zero-shot anomaly localization represents the extreme
case of anomaly detection where the anomalous regions
are segmented without a set of unblemished textures to act
as guidance. MAEDAY [36] (Nov 2022) claims to have
introduced for the �rst time the task of zero-shot anomaly
detection. The method pretrains a transformer-based network
which is used to reconstruct a partially masked image at
inference. By using this in-painting network, an anomaly
score can be computed by identifying the di�erences between
the unmasked image and the reconstructed output. Aota
et al. [4] (Jan 2023) introduce a new method for zero-shot
anomaly detection and localization that uses a large pretrained
network as a feature extractor. For each pixel, the local
features are averaged and compared to the K nearest neighbors
in the input image. Our method is most similar to the
latter as it compares local features with globally aggregated
information, and it is designed to work on textures and
not generic objects as [36]. While explicit e�orts to solve
ZSAL are a recent endeavor, the task bears similarities to
texture stationarity analysis [30], image saliency [12], and
weathering estimation [6].

3. Algorithm Design

This section describes the design decisions that went into
building our method. We analyze how di�erent components
of a zero-shot patch-based anomaly localization system a�ect
its performance, and we also introduce a novel procedure for
estimating the anomaly degree at each spatial location.

We consider the following attributes of an AL method,
identi�ed as desirable:high sensitivity at high speci�city,
ability to scale to higher resolutions, andfast running time.
Importantly, we focus on a zero-shot scenario and we are
therefore mainly interested in textures, which are largely
homogeneous, save for the anomalous regions themselves.

As a generic function for the zero-shot anomaly local-
ization problem, we propose the following self-similarity
formulation for computing the anomaly map� , given an
image� :

� ¹G– H; �– �– ' º =
Õ

� A2' ¹� ¹ � ºº

( ¹G– H– �¹� º– �Aº • (1)

Such an AL system is de�ned by three di�erent components:
feature extraction (� ), patch statistics comparison (( ), and
reference selection (' ). Simply put, the anomaly score�
at location¹G– Hº is computed as the sum of the costs when
comparing features within one or more patches%containing



PRO" / AUROC" Colors RandProj Steerable VGG
Moments 46.51 / 75.62 40.66 / 73.33 64.21 / 80.78 61.96 / 83.82
Histogram 50.43 / 77.80 53.74 / 80.48 70.64 / 84.43 73.17 / 88.44
SWW 58.62 / 83.62 62.21 / 85.89 73.08/ 87.77 77.40 / 91.44
FCA (ours) 63.30/ 85.76 66.28/ 87.62 71.75 / 86.99 81.08/ 92.58

Table 1: Preliminary experiment, comparing our patch statistics method to di�erent baselines. Compared in terms of two
metrics: PRO(0.3) and AUROC. The best results are highlighted in bold.

¹G– Hº with a set of references. We note that the proposed
de�nition is a superset of the discrete form of the stationarity
measure introduced in [30]. While not explicitly designed
for anomaly localization, by isolating the in�uence of each
spatial location to the stationarity measure in [30] one can
use it as an anomaly localization score. The main di�erence
is that Moritzet al. assume the reference set' consists of all
patches in� ¹� º, which, as we show, is suboptimal.

3.1. Feature Extraction

We evaluate the e�ect of di�erent feature extractors
� ¹� º ! R� � , � � and con�rm the �ndings of previous work
that neural networks pretrained on ImageNet [18] provide
useful features for AL.

The performance of four di�erent options for the feature
extractor function� are presented in Table1. The metrics
used for evaluation are detailed in Section4. We consider
using the colors directly (� ¹� º = � ), random projections by
convolving the image� with a set of random kernels, Steerable
Filters [21], and neural features from a simple pretrained
VGG19 network [39]. In this preliminary experiment, all
feature extractors operate on a single resolution and have a
relatively small receptive �eld,i.e., the images are scaled to
256� 256, from which feature maps of the same resolution
are extracted, with� � 128 channels (except for colors,
where� = 3). The simple RGB colors obviously have a
receptive �eld of 1; the random projections are inspired
by [19], where they are used in the context of the Sliced
Wasserstein Distance, and consist of normalized random 5� 5
kernels; we use only one level of steerable �lters (full spatial
resolution); �nally, we use the output of the �rst and second
(3 � 3) convolutional layer of a pretrained VGG network,
having an e�ective receptive �eld of 5� 5. We use the same
patch size of 25� 25 for all stationarity measures, which
is, by inspection, large enough to capture the di�erence in
appearance between normal and anomalous regions.

As shown in Table1, the embeddings obtained from the
VGG network consistently outperform the other types of
features.

3.2. Patch Statistics Comparison

The function( ¹G– H– �¹� º– �Aº evaluates the degree of
anomaly at position¹G– Hº given its local context in the
feature maps� ¹� º, by comparing with the reference� A. The

function should analyze how do the local statistics around
¹G– Hº di�er from the statistics in� A. In this subsection we
describe di�erent options for( , together with their limitations,
and introduce our Feature Correspondence Analysis (FCA)
method for comparing patch statistics.

Moments. In general, only a small region around a
certain location is needed to identify an anomaly. This leads
to a trivial patch statistics comparison method, computed by
averaging the features around¹G– Hº, i.e.,

( ¹G– Hº =










1
) 2

Õ

¹G0–H0º 2%GH

� ¹� º ¹G0– H0º � avg¹� Aº










2

2
– (2)

where� ¹� º and� A have been omitted from( for brevity, and
%GHdenotes a patch of size) � ) centered in¹G– Hº. The
de�nition can be easily extended to include spatial weighting
(e.g., Gaussian) and moments of higher order, becoming
equivalent to the method of moments from [30] when using
RGB colors directly as features.

Histogram. Moritz et al. [30] propose another two op-
tions for computing the stationarity measure, which can be
described in our conceptual framework as using a histogram-
based patch statistics comparison over RGB colors, and
steerable �lters, respectively. The histogram-based algo-
rithm can be described as:

( ¹G– Hº = hist
� Ø

¹G0–H0º 2%GH

� ¹� º ¹G0– H0º
�

	 hist¹� Aº – (3)

where 	 gives the earth mover's (Wasserstein) distance
between the two histograms. As in the case of moments, when
computing the histogram one can employ spatial weighting
to increase the importance of the pixels closer to¹G– Hº.

Sample-weighted Wasserstein (SWW).The previous
methods have limited expressive powers, speci�cally because
they consider the distribution inside a patch as a whole, unable
to pinpoint �outlieredness� of individual samples.

That ability conveniently occurs in an e�cient implemen-
tation of the 1-D Wasserstein distance when operating on
individual samples drawn from distributions. If two sets of
samples have the same size, the Wasserstein distance can be
obtained by sorting the samples and then summing over the
absolute di�erences between the elements corresponding to
the same rank [19]. That comparison of samples of the same
rank within a sorting can be seen as a b¼ective mapping
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Figure 2: Depiction of our Feature Correspondance Analysis (FCA). The• denotes the absolute di�erence.

between two sample sets, and the di�erence between corre-
sponding samples is an immediate measure for those samples'
non-compliance with the respective other distribution. That
resulting non-compliance calculation translates directly to
a coarse anomaly measure of the corresponding coe�cient
channel for each pixel; summing them across channels results
in an error score" ¹G– H; %º for each pixel¹G– Hº in a patch%.

Subsequently, we aggregate the per-patch error map"
into an anomaly measure for the center of the patch%. At this
point, averaging" ¹�–�; %º would yield the exact Wasserstein
distance, and it would be equivalent to the previously de�ned
histogram method (with bins! 1 ). Instead, we use a
Gaussian-weighted average to increase the spatial sensitivity
of the resulting anomaly score( ¹G– Hº.

Upon cursory observation, this may resemble the weighted,
sliding-window histogram calculations of Moritzet al. [30];
however, Moritzet al. compute weighted distributions before
calculating their metric, whereas we preserve the original
patch distribution but weight the in�uence of each sample's
non-compliance score on the �nal anomaly score. The
equation for this sample-weighted Wasserstein method is:

( ¹G– Hº =
Õ

¹G0–H0º 2%GH

" ¹G0– H0; %GHº� f F ¹G0 � G– H0 � Hº – (4)

where� f F ¹� G–� Hº is a spatial weighting function, for which
we use a Gaussian with variancef 2

F .
FCA. The previous de�nition of SWW allows us to sep-

arate the context size and the amount of smoothing in the
aggregation through the parameter of the Gaussian; however,
the limitation is that the �nal anomaly score for any location
¹G– Hº uses as context only the patch%GH. We further leverage
the b¼ective mapping from SWW by computing the anomaly
score at location¹G– Hº as the sum of the matching errors
for position¹G– Hº in the context of all surrounding patches,
which gives:

( ¹G– Hº =
Õ

¹G0–H0º 2%GH

" ¹G– H; %G0H0º� f ? ¹G0 � G– H0 � Hº • (5)

Please note the change of parameters in" compared to the
SWW equation (4). The main di�erence is that instead of
considering one context patch%GHwhen computing( ¹G– Hº,
we consider all patches that contain¹G– Hº, and aggregate the
contribution of the location¹G– Hº in all of these contexts.
Anomalies are generally considered smooth and all avail-
able datasets present anomalies as binary blobs that mark
anomalous regions, rather than continuous scores depicting
the contribution of each pixel to the anomaly. To attend to
this, we introduce Gaussian smoothingGf B after matching
errors, yielding the �nal formula:

( ¹G– Hº =
Õ

¹G0–H0º 2%GH

Gf B

�
" ¹�–�; %G0H0º

�
¹G– Hº � f ? ¹G0 � G– H0 � Hº •

(6)

The work�ow of the algorithm is illustrated in Figure2.
We name this novel method Feature Correspondence Analysis
(FCA), as it computes the anomaly score based on the
correspondence of features from patches to a reference.

In Figure3, we showcase the e�ect of the proposed method
on an arti�cial problem. We run FCA without smoothing
(equation5) to show how our formulation allows signi�cantly
better localization of the source of the error when comparing
the patch features statistics to the reference. While running
the histogram method with a small patch size would improve
the �rst result, it would fail in the second example because it
contains a contextual (also called conditional [40]) anomaly.

We also compare the Histogram method and our FCA on
a real case example from MVTec AD [7], in Figure4.

3.3. Reference Selection

We analyze several options for the set of references
' ¹� ¹� ºº. An intuitive solution is to use all the patches
in the image as references, however, this amounts to comput-
ing the pairwise distances between all patches in an image
which can be very time-consuming, scaling poorly as the im-
age resolution increases. Choosing a single patch at random
is fast but is a poor approximation of the global statistics.



Input Image FCA AL Hist large) Hist small)

Figure 3: Anomaly localization maps when matching patch
statistics with our FCA compared to histograms. Visualized
on 2 synthetic examples.

Input Image GT mask FCA AL Histogram AL

Figure 4: Anomaly localization maps when matching patch
statistics with our FCA compared to histograms. Visualized
on 2 textures from MVTec AD [8].

One can alternatively use one reference that aggregates
the global information (e.g., global average for moments, and
the histogram over the whole feature map, for the histogram-
based patch statistics comparison). In the case of SWW and
FCA, we choose� A as:

argmin
� A

Õ

¹G–Hº

� ¹G– H; �–�– ' = f � Agº • (7)

The feature set that minimizes the Wasserstein distance across
all patches has a closed-form solution, obtained by taking the
median over the features at each sorted position individually,
i.e., compute the median for each order statistic for each
feature channel. We analyze the performance of the global
statistic aggregation method and the trade-o� between the
number of random patches used and performance in Table2.

Using the median works well when the texture is ho-
mogeneous but struggles to capture the global statistics for
multimodal textures (e.g., structured textures with the period
larger than the patch size). To avoid this issue, one can use
the pairwise distances and discard the outliers by considering
only the closest distances. In this case,' selects the K

PRO / Time (s) Hist SWW FCA
Random (1) 60.95 / 1.1 59.56 / 5.7 62.01 / 9.2
Random (3) 67.04 / 1.1 66.79 / 8.2 69.57 / 18.7
Random (10) 72.99 / 1.2 73.23 / 17.3 75.91 / 52.3
Random (100) 74.55 / 1.7 75.69 / 134 78.45 / 482
All 74.01 / 380 � / 84984 � / 314577
Mean/Median 73.17 / 1.1 77.40 / 5.7 81.08 / 9.2

Table 2: Analysis of the e�ect of the Reference Selection
method. We report the PRO¹0•3º metric as well as the
running time (in seconds) per image. Variants that would be
unreasonably slow to be used in practice were marked with
���, and only the time was reported.

nearest neighbors (KNN) over all patches in the feature maps,
with respect to the cost( ¹G– H; � ¹� º– �Aº. We only report
results using KNN references in Section4.3, when running
on low-resolution feature maps, due to the high running time
of this method. Notably, employing a WideResnet-50 [45] as
feature extractor, using the �rst moment for patch statistics
comparison, and taking the KNN for reference selection
yields a system equivalent to Aotaet al. [4].

3.4. Final Method and Implementation Details

In accordance with the observations made in this section,
we design our �nal anomaly localization system to use
neural features from a pretrained neural network, evaluate
the local statistics with the newly introduced FCA, and use the
median for reference selection as a balance between �delity
and speed. Following recent work on anomaly detection
[15, 17, 33], we use a WideResnet-50 network [45] and
extract the features computed by the second convolutional
block, yielding feature maps with 512 channels. Because the
output of this block has a resolution 8 times smaller than the
input, and FCA can handle relatively large context sizes, we
choose to run the method at full resolution and not resize it
as a preprocessing step as done in previous work [4, 17, 33].
All patch statistics comparison variants, including our FCA,
have been implemented in PyTorch [32], utilizing CUDA
acceleration, and ran on an NVIDIA RTX A5000 GPU. We
use the same hyperparameters for all experiments, setting
f ? = 3•0, f B = 1•0. The patch size) should be set depending
on the size of the feature maps. We use) = 9 when running
at full dataset resolution and) = 3 for consistency with Aota
et al. [4] when running at 320� 320.

4. Experiments

We compare our approach with state-of-the-art methods
in zero-shot anomaly detection as well as a few other adapted
baselines. Several datasets are considered in order to assess
the robustness of the proposed approach.



4.1. Datasets

MVTec AD. Currently, the dataset most used in the con-
text of anomaly classi�cation and localization is the MVTec
AD dataset [7, 8]. It contains 15 classes with about 5 di�erent
defects per class. We use the 5 texture classes, accumulating
over 500 test images and their (manually annotated) ground
truth binary segmentation masks. The resolution of these
images ranges from 840� 840 to 1024� 1024 pixels. Past
works [4, 7, 33, 36] propose various preprocessing and post-
processing setups, consisting of resizing and cropping to
various resolutions. For a fair evaluation, we compute the
metrics at full resolution, following the original evaluation
script from the dataset provider [7]. The only adaption per-
formed is cropping to the center regions before evaluation to
avoid computing metrics on the edges of the images where
most methods do not provide reliable scores [4].

Woven Fabric Textures. Bergmannet al. [10] introduced
a small dataset for the task of defect segmentation containing
two woven fabric textures (denoted WFT from here on). For
each of them, 50 test images with various types of anomalies
are provided. The resolution of the images is 512� 512 and
ground truth segmentation masks are also included.

DTD-Synthetic. Aotaet al. [4] constructed an arti�cial
dataset to evaluate Anomaly Detection methods on more
diverse data, including anisotropic textures. The dataset is
based on the Describable Texture Dataset [14] on which
various types of defects were arti�cially added. The textures
are also randomly rotated and cropped, eventually yielding
1304 images of small resolution (180� 180 to 384� 384).
Following [4], all images are resized to a �xed 320� 320.

Aitex. The Aitex dataset [38] contains uniform fabric
textures. The defects have been manually annotated in the
original images of size 256� 4096. Following standard
practice, we split the images into square pieces. Additionally,
we discard all frames that are not completely covered by the
texture and images that do not contain any anomaly. For
consistency with [4], we resize the images to 320� 320
before evaluating both methods.

4.2. Metrics

The main metric for anomaly localization is the threshold-
independent AUROC (area under the receiver operating
characteristic curve). One limitation of this metric is that the
size of the anomalous regions is not taken into consideration,
making it less sensitive to spatially small anomalies. To
account for this, [8] introduced the PRO metric which weights
the size of each anomalous region. Moreover, they only
compute the integral up to a False Positive Rate of 30% to
avoid computing metrics on degenerate results. Since the
purpose of the proposed method is to obtain a more accurate
and detailed segmentation of the anomalies, the PRO metric
is our most important indicator. Our main contribution deals
with anomaly localization and does not focus on improving

the image-level label (computed as the maximum across the
anomaly scores map). Therefore, the anomaly classi�cation
metric, AUROC2, is only reported on the MVTec AD dataset
and omitted for the other experiments.

4.3. Results

We compare our �nal method against several existing
methods for zero-shot and few-show anomaly localization.

The results on the MVTec AD dataset are reported in
Table3 below. As the zero-shot anomaly segmentation task
is particularly new, there are very few methods designed
explicitly for this task. Concretely we compare our system
against MAEDAY, an image-reconstruction-based zero-shot
AL [ 36], and [4] � based on a Wide-Resnet-50 feature extrac-
tor, using a simple average for patch statistics comparison,
combined with a KNN search. We additionally adapt meth-
ods that were not explicitly designed for ZSAL but are related
in scope, for a more complete comparison. Belliniet al. [6]
propose a method for weathering arbitrary textures from a
single image, and uses an age-estimation procedure as the
�rst step in their pipeline. The age-estimation procedure
targets the same goal, to highlight regions in an image that
stray away from the pristine appearance. Saliency-RC [12] as
a saliency detection method highlights parts of the image that
stand out, which is related to anomaly localization. However,
as mentioned by the authors, the method's performance on
textures is limited.

PRO (0.3) AUROC AUROC2

Saliency [12] 23.88 60.40 46.00
Bellini et al. [6] 51.26 76.36 27.17
MAEDAY y [36] � 75.2y 88.9y

Aotaet al. [4] 93.82 97.47 99.67
PatchCore 1-shot 76.72 88.65 90.79
PatchCore all 92.42 97.61 99.44
PatchCore ally 93.64y 97.52y 98.96y

Ours320 95.46 97.74 99.21
Ours320 + KNN 95.58 97.77 99.17
Ours 97.18 98.73 99.58

Table 3: Quantitative comparison on the MVTec AD dataset.
We note withy the results that are taken from di�erent
papers as reported by the authors and can di�er slightly
from the evaluation used for the other scores, as discussed
in Section4.1. The subscript320 marks running our method
at the lower resolution. The 1-shot results from PatchCore
were averaged across 10 runs.

Please note that the proposed method improves the local-
ization of anomalous textures signi�cantly compared to the
previous state-of-the-art zero-shot method of Aotaet al. [4],
thanks to the use of a more precise method for comparing
patch statistics. Moreover, our system also outperforms one
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Figure 5: Qualitative comparison on challenging examples. The images are shown after cropping to center.



of the most prominent few-shot anomaly detection methods,
PatchCore [33].

PRO (0.3) AUROC Time [s]
DTD-Synthetic
Aotaet al. [4] 94.32 98.00 1.1
Ours 94.71 98.03 0.71
Ours + KNN 95.93 98.51 4.5
WFT
Aotaet al. [4] 84.59 96.11 1.1
Ours320 73.00 92.82 0.71
Ours320 + KNN 86.24 96.19 4.5
Ours 89.57 98.26 0.88
Aitex
Aotaet al. [4] 87.11 96.70 1.1
Ours 91.07 97.51 0.71
Ours + KNN 91.24 97.52 4.5

Table 4: Quantitative comparison on DTD-Synthetic, Woven
Fabric Textures (WFT), and Aitex.

We additionally run experiments on the DTD-Synthetic
dataset from [4], Woven Fabric Textures from [10], and
Aitex [38]. In these experiments we only compare with the
identi�ed leading method in ZSAL,i.e., [4]. The results are
presented in Table4 and show that our method consistently
improves upon prior art in both PRO (0.3) and AUROC
metrics. We �nd that using KNN for reference selection
can, in some cases, signi�cantly improve our results at the
cost of a higher running time. On the other hand, using the
median as reference allows our method to process images
at higher resolution. Importantly, as the resolution of the
images increases, the value added by our FCA also grows.
This can be seen in the results on the WFT (512� 512)
and MVTec AD (1024� 1024) datasets where running our
method at full resolution outperforms the lower resolution +
KNN variant.

In Figure5 we present a qualitative comparison between
our method and the zero-shot state-of-the-art method of Aota
et al. [4]. We show the anomaly predictions on challenging
samples from each dataset. In general, the anomaly maps
produced by our method have high �delity, with more precise
localization (rows 1, 2, 4), fewer false positives (rows 3, 6),
and more complete coverage of the anomalous regions (rows
5, 7) compared to [4]. For more visualizations please see the
supplementary material.

5. Discussion

The results suggest the proposed method is e�ective in
predicting anomaly scores with high �delity. While FCA
generally performs better compared to other methods, it
also has a higher complexity. Computing local moments or
histograms can be done e�ciently thanks to the separability
of the Gaussian kernel. This does not apply to SWW which

requires sorting the values inside each sliding window.
Table5 reports the computational complexity of various

methods for anomaly localization. Due to the downsampling

Method Complexity
Moments $ ¹#) � º
Histogram $ ¹#) �� º
Aotaet al. [4] $ ¹#) � ¸ # 2� º
Ours $ ¹#) 2 log¹) º� º
Ours + KNN $ ¹# 2) 2 log¹) º� º

Table 5: Complexity analysis.� :
number of features;) 2: patch area;
# : image pixel count;� : bins per
histogram. For KNN, brute force
complexity is used, as the number
of neighbours is in the order of
# ( = # � 4 in [4]).

in feature extractors,
the resolution of the
maps is rather small,
which in turn result in
small values for) Ÿ 10
in our experiments. In
practice, for most meth-
ods the running time is
dominated by running
the WideResnet-50 fea-
ture extractor. The no-
table exception is Ours
+ KNN which has a run-
ning time about 7 times
larger compared to the
single reference counterpart when run at the same resolution.

Due to the large and varied datasets, our experiments
arguably support these �ndings robustly; however, we observe
that the manually de�ned ground-truth images of MVTec AD,
WFT, and Aitex inevitably introduce a level of subjectivity
to those ground-truth references. In some cases, as for
instance shown in Figure6, signi�cantly di�erent ground
truth interpretations would have been possible, relativizing
the accuracy score in such cases.

A limitation of our system is that, by design, it only works
on textures. Generic objects can have very di�erent feature
statistics in di�erent regions which would not be handled
correctly by our method.

Input Image Mask Ours Aotaet al. [4]

Figure 6: Manual ground-truth annotations remain subjective
where multiple plausible interpretations exist.

6. Conclusion

In this work, we put forward a generic framework for
performing zero-shot anomaly localization. We identify the
importance of the di�erent components and suggest a new
approach that signi�cantly improves upon prior art. The most
important novelty is the proposed FCA for patch statistics
comparison which enables high-�delity anomaly localization
that scales well with large textures. The performance of the
method is validated on several datasets o�ering a compre-
hensive overview of the advantages of the method and the
trade-o� between running time and prediction quality.
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Supplementary Material

A. Detailed Quantitative Comparison

In Table6 we present the detailed breakdown of the metrics
into texture classes for all datasets. We report the PRO(0.3) and
AUROC metrics as introduced in the main paper. Additionally,
the per-class� 1 score [13] corresponding to the (� 1-)optimal
threshold is included.

Ours Ours + KNN Aota et al.[4]
MVTec AD [8] PRO AUROC F1 PRO AUROC F1 PRO AUROC F1
carpet 95.44 98.30 72.58 96.92 98.81 71.53 96.13 98.83 69.97
grid 98.07 99.46 61.62 97.77 99.27 52.41 97.01 99.12 51.89
leather 98.90 99.45 66.06 98.92 99.52 60.26 98.13 99.47 58.74
tile 96.33 98.22 82.16 88.95 94.31 65.55 84.29 93.41 63.74
wood 97.18 98.22 76.34 95.22 96.98 62.42 93.56 96.54 58.68
DTD-Synthetic [4] PRO AUROC F1 PRO AUROC F1 PRO AUROC F1
Blotchy_099 98.67 99.55 78.92 98.73 99.57 79.50 97.60 99.19 69.56
Marbled_078 97.97 99.33 76.25 98.05 99.37 76.60 96.51 98.80 66.11
Mesh_114 94.44 97.63 65.46 95.91 98.16 66.95 95.14 97.75 64.16
Strati�ed_154 98.78 99.15 66.67 98.81 99.19 66.80 98.53 99.25 64.48
Woven_068 97.24 98.86 70.51 97.31 98.92 70.72 95.34 98.29 65.61
Woven_125 98.51 99.52 77.03 98.66 99.56 77.59 97.00 98.99 67.50
Fibrous_183 96.95 98.96 72.82 97.21 99.06 73.29 94.42 98.20 65.42
Matted_069 89.43 99.33 76.15 88.89 99.37 76.60 89.34 99.17 68.64
Perforated_037 94.55 96.60 64.66 96.62 97.76 68.78 95.74 97.05 67.41
Woven_001 94.73 98.93 66.17 97.79 99.59 68.96 96.51 99.42 63.59
Woven_104 89.98 96.84 64.93 90.40 96.96 66.05 89.78 96.60 65.28
Woven_127 85.26 91.63 58.88 92.82 94.62 69.58 85.96 92.22 63.81
WFT [10] PRO AUROC F1 PRO AUROC F1 PRO AUROC F1
texture_1 92.38 97.98 80.34 85.36 94.25 68.46 89.01 95.94 73.12
texture_2 86.77 98.56 77.91 87.12 98.13 77.05 80.16 96.28 71.02
Aitex [38] PRO AUROC F1 PRO AUROC F1 PRO AUROC F1
t_00 78.00 95.08 49.41 75.19 94.08 49.56 62.91 90.21 45.33
t_01 76.85 91.28 69.62 80.08 92.34 73.47 70.71 91.31 71.04
t_02 96.34 99.32 56.30 96.57 99.33 56.93 92.92 99.02 53.45
t_03 88.77 97.94 68.04 89.44 97.97 67.75 87.43 97.59 65.83
t_04 99.39 99.79 72.44 99.39 99.79 72.23 97.89 99.75 72.04
t_05 98.15 99.17 49.34 98.04 99.11 47.66 97.95 99.05 43.41
t_06 99.97 99.99 71.60 99.97 99.99 70.73 99.98 99.99 76.54

Table 6: Metrics breakdown into texture classes.

B. Additional Qualitative Comparison

We visually compare the anomalous regions extracted by
our method and Aotaet al. [4] by thresholding the anomaly
maps. We compute the optimal threshold with respect to the
� 1 measure for each texture class individually and display the
anomalous area in the original texture. This visualization is
included in Figure7.
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Figure 7: Qualitative comparison on challenging examples, displaying anomalous regions detected by each method via
thresholding of the predicted anomaly maps. The respective thresholds are chosen to be� 1-optimal. The thresholded (binary)
maps are represented through their enclosing contours; all images are shown after cropping to the center.


