
RAO ET AL.: VORF 1

VoRF: Volumetric Relightable Faces

Pramod Rao1

prao@mpi-inf.mpg.de

Mallikarjun B R1

mbr@mpi-inf.mpg.de

Gereon Fox1

gfox@mpi-inf.mpg.de

Tim Weyrich2

tim.weyrich@fau.de

Bernd Bickel3

bernd.bickel@ist.ac.at

Hanspeter Pfister4

pfister@g.harvard.edu

Wojciech Matusik5

wojciech@csail.mit.edu

Ayush Tewari5

ayusht@mit.edu

Christian Theobalt1

theobalt@mpi-inf.mpg.de

Mohamed Elgharib1

elgharib@mpi-inf.mpg.de

1 Max Planck Institute for Informatics,
Saarland Informatics Campus,
Germany

2 Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU),
Germany

3 IST-Austria,
Austria

4 Harvard University,
USA

5 MIT CSAIL,
USA

Abstract

Portrait viewpoint and illumination editing is an important problem with several ap-
plications in VR/AR, movies, and photography. Comprehensive knowledge of geometry
and illumination is critical for obtaining photorealistic results. Current methods are un-
able to explicitly model in 3D while handing both viewpoint and illumination editing
from a single image. In this paper, we propose VoRF, a novel approach that can take even
a single portrait image as input and relight human heads under novel illuminations that
can be viewed from arbitrary viewpoints. VoRF represents a human head as a continuous
volumetric field and learns a prior model of human heads using a coordinate-based MLP
with individual latent spaces for identity and illumination. The prior model is learnt in
an auto-decoder manner over a diverse class of head shapes and appearances, allowing
VoRF to generalize to novel test identities from a single input image. Additionally, VoRF
has a reflectance MLP that uses the intermediate features of the prior model for rendering
One-Light-at-A-Time (OLAT) images under novel views. We synthesize novel illumina-
tions by combining these OLAT images with target environment maps. Qualitative and
quantitative evaluations demonstrate the effectiveness of VoRF for relighting and novel
view synthesis, even when applied to unseen subjects under uncontrolled illuminations.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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. a) 3 input views (masked) b) Novel views c) OLAT images d) Relit novel views .

Figure 1: We present VoRF, a learning framework that synthesizes novel views and relighting
under any lighting conditions given a single image or a few posed images. VoRF has explicit
control over the direction of a point light source and that allows the rendering of a basis of
one-light-at-a-time (OLAT) images (c). Finally, given an environment map (see d, insets)
VoRF can relight the input (d) by linearly combining the OLAT images.

1 Introduction

Portrait editing has a wide variety of applications in virtual reality, movies, gaming, photog-
raphy, teleconferencing, etc. Synthesizing photorealistic novel illuminations and viewpoints
of human heads from a monocular image or a few images is still an open challenge. While
there has been a lot of work in photorealistic facial editing [2, 3, 16, 21, 30, 36, 38, 43], these
methods are usually restricted by sophisticated multi-view input [3, 16], inability to edit full
face region [2, 11, 38] or pure relighting capability without viewpoint editing [21, 30, 36, 43].
Some recent efforts [1, 14] have shown the ability to edit portrait lighting and viewpoint
simultaneously without sophisticated input, while they still suffer from geometric distortion
during multi-view synthesis as they rely on 2D representation.

Recently, NeRF [17] has proven a powerful 3D volumetric representation. and is capable
of producing novel views at an unprecedented level of photorealism [17]. NeRF has been
applied to tasks like human body synthesis [12, 29], scene relighting [4, 28, 41], image com-
positing [20, 39] and others [34]. Sun et al. introduced Neural Light-transport Field (NeLF)
[32], a NeRF-based approach for facial relighting and viewpoint synthesis that predicts the
light-transport field in 3D space and generalizes to unseen identities. However, their method
struggles to learn from sparse viewpoints and requires accurate geometry for training. Besides,
they need ≥ 5 views of the input face during test-time to avoid strong artifacts.

In this paper, we propose a new method that takes a single portrait image as input for
synthesizing novel lighting conditions and views. We utilize a NeRF-based volumetric rep-
resentation and a large-scale multi-view lightstage dataset[37] to build a space of faces (ge-
ometry and appearance) in an auto-decoder fashion, that we call the Face Prior Network.
This network provides a suitable space to fit any test identity. In addition, our Reflectance
Network takes a feature vector from the Face Prior Network as well as the direction of a
point light source as input, to synthesize the corresponding “One-Light-at-A-Time” (OLAT)
image. This network is supervised using the lightstage dataset [37]which captures all aspects
of complex lighting effects like self-shadows, diffuse, specularity, sub-surface scattering and
higher order inter-reflections. Using OLATs has been shown to improve the quality of relight-
ing [2, 16] without assuming a BRDF model or explicit priors. After training, a test identity
can be relighted by first regressing the corresponding OLAT images for the desired novel
viewpoint which are then linearly combined with any target environment map to synthesize
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relighted results [6]. Our comparisons to previous methods show that our approach performs
novel views that are significantly better than those of SOTA methods like PhotoApp [14].
Furthermore, our approach produces results that are significantly more consistent with the
input than those of NeLF [32]. It can operate directly on a monocular image and outperforms
NeLF even with 3 input views.

To summarize, we make the following contributions: (1) We present a NeRF-based ap-
proach for full-head relighting that can take a single input image and produces relit results
that can be observed from arbitrary viewpoints. (2) We design a dedicated Reflectance Net-
work that is built over the Face Prior Network that allows our method to learn self-shadows,
specularities, sub-surface scattering, and higher order inter-reflection through a lightstage
dataset supervision. (3) VoRF is additionally able to synthesize One-Light-at-A-Time 3D
volume for any given light direction, even though we learn from a dataset which has limited
number of light sources.

2 Related Work

The literature of portrait editing is vast and here we discuss only methods which are related
to relighting. OLAT images generated by a lightstage are popular for capturing the face re-
flectance details, as pioneered by the seminal work of Debevec et al. [6]. Here, it was shown
that such OLAT images can be used as illumination basis to express an arbitrary environment
map through a linear operation. The highly photorealistic relighting achieved by this for-
mulation encouraged further research. This includes methods dedicated for image sequence
processing [3, 40], shadow removal [42], capturing high-quality reflectance priorities from
monocular images [2, 38] among others [16, 19, 21, 31, 36]. Among these, [2] is the clos-
est in problem setting and approach. [2] can regress OLATs for any camera position given
monocular image. But since they rely on 3DMM model, they can only relight face interior.
The majority of these methods, can edit the face interior only [2, 36, 38], or can edit the
lighting only while keeping the original camera viewpoint unchanged [16, 19, 21, 31, 40, 42].
The method proposed by Bi et al. [3] can edit the camera viewpoint and lighting of the full
head simultaneously. But, it is person-specific.

Instead of using a lightstage OLAT data, some methods employ illumination models
and/or train with synthetic data [5, 11, 26, 27, 43]. While these approaches can generalize to
unseen identities, they can be limited in terms of photorealism and the overall quality [26, 27,
43] and some are constrained to editing only the face interior [11]. Recent efforts leverage
the generative capabilities of the StyleGAN face model [10] to learn from in-the-wild data
in a completely self-supervised manner [1, 33]. More recently, in PhotoApp B R et al. [14]
combined the strength of both lightstage OLAT data and the generative model StyleGAN.
Such formulation has two main advantages. First, it achieves strong identity generalization
even when training with as few as just 3 identities. Second, it is capable of relighting the
full head and editing the camera viewpoint simultaneously. However, as StyleGAN is a 2D
generative model, PhotoApp suffer to generate view consistent results in 3D. In contrast, our
method learns the prior space in volumetric representation, which generate significantly better
view-consistent results. StyleGAN embedding can also change the original identity, leading
to unacceptable results. Our method on the other hand, maintains the integrity of the original
identity.

Recently, there have been multiple NeRF-based methods for general scene relighting [4,
15, 25, 28, 41]. While NeRV [28] requires the illumination of the scene as input, NeRFac-
tor [41], NeRD [4], NeRFW [15], NeRF-OSR [25] can work with unknown input scene
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illumination. The illumination space of NeRFW [15] is not based on physically meaningful
semantic parameters. All of the above NeRF-based methods are scene specific and require
multiple images of the scene at test time. In contrast, our method can work with images with
unknown scene illumination and can even work from a single image as we build a strong
face prior model in the first stage to handle such cases. And our relighting is controlled by
physically-based semantically meaningful environment maps.

The closest approach to our problem setting is NeLF [32]. Based on NeRF, it has a good
3D understanding of the scene. It learns the volume density and light transport for each point
in 3D space. NeLF adopts a pixelNeRF-inspired architecture where the density and color
values rely heavily on localized image features. As a result, their method struggles to capture
global cues and sometimes results in holes in the volume. Their method also requires high
quality geometry for supervision during training, and thus fails to learn from sparse viewpoint.
It also needs at least 5 viewpoints of the input face during test otherwise significant artifacts
are produced. In contrast, we learn a prior geometric and appearance space of faces, which
helps in capturing realistic face volumes. This allows synthesizing novel views and relightings.
Our technique maintains the integrity of the facial geometry during viewpoint interpolation,
relights the full head and can operate using as few as a single monocular image during test. It
also provides novel generative capabilities of unseen identities and illumination during test.

3 Face Reflectance Fields
Training

Face Prior
MLP

𝒙
Volume

Rendering

Face Prior Network

Reflectance
MLP

Volume
Rendering

Reflectance Network

𝒛𝒋

𝒅

Figure 2: Our Face Prior Network learns to
decode latent codes z j to estimate radiance
and volume density for each point in 3D space.
Our Reflectance Network learns to synthesize
OLAT images of the face.

We consider scenes that contain an illumi-
nated model of a human face. Building on
previous works [6, 17] and assuming that all
light sources are sufficiently far away from
the face, we model the face as a volumet-
ric reflectance field, which is a pair (σ ,R).
The volume density function σ : R3 → R
maps scene points to density values and
the function R(ω,x,d) indicates the frac-
tion of Linc(ω) (the radiance incident from
direction ω) that is reflected from point x
into direction d. We assume that image for-
mation follows a perceptive camera model.
Our NeRF-based [17] models in Sec. 4
learns functions of the form FΘ(x,d) =
(Lout(x,d),σ(x)), based on latent codes for the facial identity and lighting conditions, where
Lout(x,d) is the radiance emitted from point x into direction d.

“One-Light-at-A-Time” lighting means that the face is illuminated from only one single
light source that is sufficiently far away. Assuming that the set I of light sources for which
we can render OLAT images covers the set of all possible incident angles sufficiently densely,
we can approximate any desired illumination: The radiance L(r) accumulated along a ray r
can be broken down as

L(r)≈∑
i∈I

fi ·L(i,r) (1)

where L(i,r) is the amount of radiance that originates from OLAT light source i and that
eventually emerges from the scene along ray r. The fi are factors with which the OLAT

Citation
Citation
{Martin-Brualla, Radwan, Sajjadi, Barron, Dosovitskiy, and Duckworth} 2021

Citation
Citation
{Sun, Lin, Bi, Xu, and Ramamoorthi} 2021

Citation
Citation
{Debevec, Hawkins, Tchou, Duiker, Sarokin, and Sagar} 2000

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020



RAO ET AL.: VORF 5

light sources need to be modulated in order to implement a given lighting condition. Similar
equations are known in the literature [6], showing that under the stated assumptions we can
render the face under any given lighting specification ( fi)i∈I just as a linear combination of
OLAT images. We give a more detailed derivation of Eq. 1 in our supplemental material.

To train our face prior network (see Sec. 4) and to evaluate our method, we use HDR
environment maps from the Laval Outdoor dataset [8] and the Laval Indoor HDR dataset [7]
to obtain coefficients fi. This allows us to turn the OLAT basis images into depictions of
faces under real world lighting conditions and we generate 600 relit images for each subject.

4 Method
We address the problem of simultaneous portrait view synthesis and relighting. Given a
small set of N ≥ 1 input images along with their camera parameters, we build a Face Prior
Network(P) and a Reflectance Network(R) utilising NeRF-based representation. Firstly, the
P is modelled in an auto-decoder fashion to learn a prior over human heads under various
illumination conditions and this formulation allows VoRF to generalize to novel test identities.
Furthermore, to model face reflectance that can re-illuminate a face for several viewpoints,
we design a R that learns to predict OLAT images. Using Eq. 1, we linearly combine these
OLAT images with HDR environment maps to render novel views of a given face, under new
lighting conditions. An overview of our method can be found in Fig. 2.

4.1 Learning Face Prior

Test

① Fitting & Fine-Tuning

② Relighting

FP-MLP VR𝒛

refout

FP-MLP
𝒅
𝒙

R-MLP VR

R-MLP VR

...
...

...
... ...

...

Figure 3: To reconstruct an unseen test face,
we optimize latent code z and fine-tune the
Face Prior Network, We can relight the recon-
structed face by having the Reflectance Net-
work produce a basis of OLAT images (step
2), that we linearly combine into any desired
lighting condition. In this figure, MLP’s with
the same label share their weights.

Neural Radiance Fields [17] learns a coordi-
nate based representation of each scene by
mapping 3D coordinates x ∈ R3 and direc-
tion d∈ S2 to the densities and radiance val-
ues. However, NeRF by design is able to
optimize a single scene at a time. To com-
bat this and obtain a distribution over the
entire space of faces and illumination condi-
tions, we use an auto-decoder formulation.
More specifically, we first prepare a dataset
by combining a set of environment maps
with OLAT images acquired from lightstage
resulting in J combinations. For each combi-
nation j ∈ J, we obtain image C j and a cor-
responding latent code z j. The latent code z j
is partitioned into identity and illumination
components as zid

j and zenv
j respectively. We

initialize the latent codes from a multivari-
ate normal distribution and observe that sep-
arating the components individually leads to
faster convergence during the training pro-
cess (see supplemental for details). We de-
sign the Face Prior Network to take the la-
tent code z j along with x, d as inputs and predict radiance c as well as volume density σ
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for every point in 3D space. We represent the Face Prior Network as PΘP (z j,x,d) = (c,σ).
Following NeRF, the network weights ΘP along with the latent codes z are optimized jointly
to regress the color values with a mean squared objective function as follows:

LC := ∑
j∈J
∥Ĉ j−C j∥2

2 (2)

where Ĉ j is the image obtained by volume rendering based on PΘP (z j, . , . ). To ensure
smooth interpolation of the latent spaces and additionally prevent the latents z j from diverg-
ing away from the origin, we introduce regularization. Inspired by [22], we regularize the
distribution of the latent codes by minimizing the mean squared objective of individual latents
as:

Lreg = ∑
j∈J
∥zid

j ∥2
2 +∥zenv

j ∥2
2 (3)

4.2 Synthesizing new OLAT images
To model a reflectance field of the faces, we propose a Reflectance Network(R) that learns
a volumetric reflectance field by utilising the σ predictions provided by P (see Sec. 3). For
an OLAT light source i, we consider the the incident light direction ωi as an input to the
R. To synthesize OLAT images, we design the R based on NeRF and directly regress the
radiance values o. As reflectance of the face is a function of geometric and other fine details,
we provide a feature vector obtained from the 9th layer of P as an additional input to R
(dotted lines in Fig. 2 and Fig. 3). We also provide the viewing direction d as input to capture
view-dependent effects. Thus, Reflectance Network learns a functionRΘR , parameterized by
ΘR and is given as follows: RΘR(ωi,FP(z j,x,d),d) = o. To synthesize an OLAT image
Ô j,i along the light direction i for j ∈ J, we combine o with the volume density σ predicted
from P . ΘR is optimized by minimizing HDR-based loss inspired by [18] and S is a stop
gradient function:

LO := ∑
j∈J

∥∥∥∥∥ Ô j,i−O j,i

S(Ô j,i)+ ε

∥∥∥∥∥
2

2

(4)

where O j,i is the ground truth OLAT image from the dataset that is used in the construction
of C j. This loss function is especially suited for handling the semi-dark lighting conditions
of OLAT images. Our HDR lightstage dataset predominantly consists of dark regions and
utilising an L2 loss function results in muddy artifacts in those regions [18]. In contrast,
the HDR-Loss divides the absolute error by the brightness of the ground truth image giving
higher weight value for darker regions. Thus, utilising this loss function helps to recover high
contrast differences in dark regions.

4.3 Training
NeRF-based methods typically require dense camera views of the scene to faithfully represent
the scene without cloudy artifacts. As our dataset has limited number of views, we make use of
hard-loss [24] to avoid cloudy artifacts. We consider, as in previous work , the accumulation
weights wr,k that are computed during volume rendering, for a given ray r (see [24]). Imposing
P(wr,k) ∝ e−|wr,k|+ e−|1−wr,k| for the probabilities of these weights, we minimize

Lh = ∑
r,k
− log(P(wr,k)) (5)
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View synthesis
NeLF IBRNet Ours

Input PSNR SSIM PSNR SSIM PSNR SSIM
5-views 22.01 0.80 24.38 0.82 27.45 0.84
3-views 20.57 0.75 22.0 0.76 26.67 0.82
2-views 19.63 0.70 20.34 0.71 25.44 0.79
1-view N/A N/A N/A N/A 22.49 0.77

View synthesis and relighting
NeLF IBRNet+SIPR Ours

Input PSNR SSIM PSNR SSIM PSNR SSIM
5-views 21.34 0.79 19.63 0.75 24.16 0.81
3-views 19.72 0.75 18.38 0.73 22.80 0.76
2-views 19.06 0.69 17.01 0.71 22.15 0.74
1-view N/A N/A N/A N/A 20.21 0.69

Table 1: Comparing against NeLF [32] (requires at least 5 input views), IBRNet [35] and
SIPR [30] in view synthesis and relighting. Our technique outperforms related methods
irregardless of the number of input views (see bold).

which encourages the density functions implemented by P to produce hard transitions. We
apply this loss during the synthesis of both Ĉ j and Ô j,i, which helps to avoid cloud artifacts
surrounding the face.

Our overall training loss function now is L = αLC + βLO + γLreg + δLh with hyper
weights α,β ,γ,δ .

4.4 Test
Given a small set of N≥ 1 input images of an unseen identity under unseen lighting conditions,
we fit z and fine-tune ΘP by minimizing (using backpropagation)

Lg := αLC + γLreg +δLh (6)

where the input images now take the place of the C that were used during training.
Note, that first, we update only z for 10,000 iterations (learning rate 1× 10−3), to make
sure that it lies well within the learnt prior distribution. Then, assuming that the fitting step
has converged, continue to jointly update z and ΘP for 3,000 iterations (learning rate 3×
10−6). We demonstrate the significance of this two-step approach as ablation study in the
supplemental material.

With z and ΘP optimized in this way (part 1⃝ in Fig. 3), we can already render the face
under novel views. In order to be able to also change lighting (part 2⃝ in Fig. 3), we useR to
render an OLAT basis that by Eq. 1 we can use to synthesize any given lighting conditions.

5 Results
We evaluate our method qualitatively and quantitatively to demonstrate the efficacy of our
method using our lightstage dataset, see Sec. 5.1. Additionally, we qualitatively evaluate
our method on H3DS [23], a naturally lit multi-view dataset. We compare against three
methods; 1) NeLF [32] 2) combination of IBRNet [35] and SIPR [30], and 3) PhotoApp [14].
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Input ←−−− Novel views −−−→ ←−−−−−−−− Relit-views −−−−−−−−→

Figure 4: Novel view synthesis + relighting on unseen identities from the H3DS [23] dataset.
We show results obtained by using a single image (top) and two images (bottom). Target
environment maps are shown in the insets. Our technique performs photorealistic novel view-
synthesis and relighting.

We perform ablation studies on the various design choices of our framework and discuss their
significance in the supplemental material.

For a fair comparison of our method against the baselines, we retrain NeLF, IBRNet, SIPR
and PhotoApp with our lightstage dataset. All the methods are retrained as suggested in the
original works. We recommend referring to supplemental material for elaborate implementa-
tion details.

5.1 View synthesis and Relighting
In this section we present the results for view synthesis and relighting to demonstrate that our
method can synthesize novel lighting conditions of the subject at novel viewpoints. Fig. 4
shows novel view synthesis and relighting produced by our technique. Here, we present
results with single input view (top) and two input views (bottom). We observe that our
method produces photorealistic renderings that are view-consistent. Our method maintains
the integrity of the input identity and recovers the full head, including hair. It also maintains
the integrity of the facial geometry while relighting at extreme views (third and fourth row,
last column in Fig. 4).

Our Reflectance Network has the ability to synthesize subjects corresponding to arbitrary
light directions and enable us to relight them using any HDR environment maps following
Eq. 1. To achieve this, our technique predicts the 150 OLAT images as the light basis of
the lightstage. In our supplemental work we show that through our rendered OLATs we
are able to reproduce view-dependent effects, specular highlights and shadows. Finally,
our disentangled identity and illumination latent space representation allows us to perform
interesting interpolations between different subjects and illuminations. In addition to the
results shown here, we recommend the readers to refer to the supplementary material for
more results and evaluations.

5.2 Comparison to Related Methods
We quantitatively and qualitatively compare against the state-of-the-art view synthesis and
relighting methods. All the quantitative evaluations are on unseen lightstage subjects with un-
seen illumination conditions (see supplemental for evaluation dataset details). We summarize
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Input GT Ours NeLF IBRNet + SIPR

Figure 5: A sample result on the lightstage test set, with groundtruth. Our technique produces
novel view synthesis and relightings that clearly outperform NeLF [32] and IBRNet [35] +
SIPR [30].

our quantitative evaluations in Tab. 1 in terms of average PSNR and SSIM over all the test im-
ages. First, we compare our method for the view-synthesis task with different number of input
views. Next, with same test setup we evaluate for the task of simultaneous view synthesis and
relighting. For both the tasks, we observe that our method convincingly outperforms NeLF,
IBRNet and IBRNet + SIPR. Unlike our approach, we observe that neither NeLF nor IBR-
Net can handle single input image which limits their application to multi-view setups. High
evaluation scores indicate that our method recovers decent geometry and synthesizes better
quality relighting. These results can be more easily understood in Fig. 5, where we clearly
observe our renderings match the groundtruth more closely than the baseline methods.

We additionally compare against NeLF on H3DS dataset (see Fig. 6) where our approach
clearly performs better. We argue this is due to NeLF’s inability to recover decent geome-
try from sparse views. Likewise, IBRNet fails to construct multi-view consistent geometry
under sparse views. Further with IBRNet+SIPR, we observe that SIPR depends on the view-
point, which breaks down the multi-view consistent relighting. Finally, we compare against
PhotoApp in Fig. 8. PhotoApp inherits the limitations of the StyleGAN space, specifically,
the inversion step which modifies the input identity. Such modifications lead to highly in-
consistent results limiting the application of PhotoApp. In contrast, our approach produces
view-consistent results that resemble groundtruth.

Limitations: While our proposed method generates photorealistic renderings, few limita-
tions still exist. In Fig. 7 we showcase results of our approach on FFHQ [9] and CelebA [13]
datasets. Despite being trained on the lightstage dataset containing all the subjects with closed
eyes and neutral expressions, we can handle novel view synthesis with opens eyes as well
as natural expressions. This is attributed to the fine-tuning of the Face Prior Network during
test. Fig. 7 further demonstrates that our method preserves the mouth and eye shape during
relighting. However, it cannot synthesize their colors or texture. We argue that this is not a
limitation of our approach but of the lightstage dataset. Lastly, under monocular setting our
approach can sometimes generate regions that do not exist in reality. For instance, in Fig. 9
in case of single input, hair is synthesized for the bald person. Such performance is expected
due to insufficient information from a single view.

6 Conclusion
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Input Novels Views (Ours) Ours NeLF Ours NeLF

Figure 6: Novel view synthesis and relightings on the H3DS dataset [23]. Our technique
significantly outperforms NeLF [32] especially at views far from the training set.

Input PhotoApp Ours

Figure 8: PhotoApp [14] view synthesis
suffers from strong artifacts, including loss
of the input identity and view-inconsistent
results.

Inputs 3-views 2-views 1-view

Figure 9: Our method produces good re-
lightings and view synthesis using from 3,
2 or even 1 input view.

Inputs ←− Novel views −→ ←− Relit-views −→

Figure 7: Given single input view from FFHQ
(top) and CelebA (bottom). Although our
method works well for novel view synthesis,
it struggles to synthesize eyes and facial ex-
pressions during relighting.

We have presented an approach for editing
light and viewpoint of human heads even
with a single image as input. Based on neu-
ral radiance fields [17], our method repre-
sents human heads as a continuous volumet-
ric field with disentangled latent spaces for
identity and illumination. Our method is de-
signed to first learn a face prior model in
an auto-decoder manner over a diverse class
of heads. Further, followed by training a re-
flectance MLP that predicts One-Light- at-
A-Time (OLAT) images at every point in
3D, parameterized by point light direction
which can be combined to produce a target
lighting. Quantitative and qualitative evaluations show that our results are photorealistic,
view-consistent and outperforms existing state-of the-art works.
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