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In this supplemental document, we provide a detailed derivation of the OLAT decompo-
sition and the face reflectance fields in Sec. 1. We then provide a summary of related works
in Sec. 2, to better highlight our work with respect to the literature. In Sec. 3 we provide
the detailed network architectures of our Face Prior Network and our Reflectance Network.
Further, we discuss the lightstage dataset used to train our method in Sec. 4. Implementation
details are given in Sec. 5, where we also show additional results on relighting and view-
point synthesis of our method, with different numbers of input views. We also discuss the
failures of baseline methods (PhotoApp in Sec. 6, NeLF in Sec. 7). In Sec. 8 we showcase
our intermediate OLAT results. Furthermore, in Sec. 9 we provide a detailed ablative study
on various design choices of our proposed solution. In Sec. 10 we analyze the limitations of
our proposed method. In addition to this supplemental document, we have included multiple
videos summarizing all our results.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Detailed derivation of OLAT decomposition

Obtaining complex lighting conditions by linearly combining OLAT images according to en-
vironment maps is a principle that is well-studied in the literature [2]. We find it worthwhile
to show that this principle is actually compatible with NeRF’s volumetric rendering model
[8]. We already gave a short description of this compatibility in the main paper, but we repeat
the argument here in a more detailed form.

Debevec et al. [2] argue that under the assumption that all sources of incident light are
sufficiently far away from the face we can describe lighting conditions by a function Liyc(®).
This function only depends on the direction @ € § from which radiance is incident and
indicates the amount of that radiance, where S is the set of all such directions. We introduce a
combination of a volume density function [8] and a reflectance field [2], that we call volumetric
reflectance field: A volumetric reflectance field is a pair (o, R), where the volume density
function ¢ : R* — R maps scene points to density values and the function R(®, x,d) indicates
the fraction of Ljyc (@) that is reflected from point x in the direction d.

The additiveness of light transport allows us to describe the total amount Loy (x,d) of
radiance reflected out of point x in the direction d as

Lou(x,d) : /wad Line(@) do> )

weS

We assume that image formation follows the volumetric principles described by Mildenhall
et al. [8], i.e. we assume a ray ro q(f) = 0+ td being shot through a camera pixel into the
scene, and describe the amount of radiance accumulated along this ray as

ty t

L(r) = / T(1)- 0(r(t)) - Lou(r(¢),d) di with T(¢) := exp | — / s(rs)ds | @)

In n

where t,,,; are bounds within which the entire face is contained.

In order to bridge the gap between the OLAT conditions of the dataset and real world
lighting conditions, we discretize the dense set of incident light directions S to a finite set
I, with one direction i € I per OLAT light source where S; C S represents a subset. We now
approximate the following:

Lout X, d ZR wl;X d) 1nc( ) (3)

il

where @; is the incident light direction of OLAT light source i and Linc (i) := [yes, Linc (@) is
the discretized version of L.

The property of OLATS that allow to compose complex lighting conditions can now be
derived as follows:

Under OLAT conditions there exists a single i € [ that contributes some radiance L; :=
Linc (i) (i.e. only lamp i is turned on), while for all j # i we have Liy(j) = 0. Thus, for a given
ray r with origin o and direction d, the accumulated radiance L(r) is approximated by

L(i,r) = /T(t) o (r(t))-R(w;, r(t),d) - L; dt 4)
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Under non-OLAT conditions all we know is that Vi € I there must exist some factor f;,
s.t. Linc(£) = f; - LL;. This allows us to equate

r)z/T(t)- ))- Y R(@i,r(t),d) - fi- Ly dr

i€l

®)

=Y s /T ) R(@;,r(c),d)-Lide =Y fi-L

i€l i€l

Eq. 5 shows that under the stated assumptions we can render the face under any given
lighting specification (f;);es just as a linear combination of OLAT images. The errors caused
by the approximations (=) in the derivations above reduce as we increase the number of
OLAT directions that are used to discretize S.

2 Related Works

In Tab. 1, we compare several NeRF based relighting methods to VoORF. As shown in the
table, our method can work with as low as single image at test time.While many methods
require illumination of given test scene as input to perform relighting, our method can work
without scene illumination as input. NeRFW models effects of illumination variation using an
appearance latent code, which doesn’t have any physical meaning. In contrast, our method can
relight face with physically meaningful environment maps (termed as "semantic illumination"
in table Tab. 1).

NerRV | NeRF- 1 \erD | NerRFW | NRF | NetE | Ours
actor OSR

Tnput views > 1 > 1 > 1 > 1 > 1 > 1 1
required

Works with
unl.<n.0 wi No Yes Yes Yes Yes Yes Yes
original

illumination
Se;rllﬁlntlc Yes Yes Yes No Yes Yes Yes
Works on

unseen test No No No No No Yes Yes

scenes

Table 1: NeRF-based relighting methods come with different feature sets: They require dif-
ferent numbers of input views, might require original illumination to be known, or only work
on training scenes.
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Fp

= 256 —» 256 —» 256 —» 256 —» 256 > 256 —» 256 —» 256 256 > 256 —» 128 --» ¢

y(d)

Figure 1: The architecture of our Face Prior Network P is based on that of NeRF [8]: Input
vectors are green, latent vectors are dark blue and outputs are red. ¥y denotes positional
encoding [8]. Each light blue block represents the result of a fully connected layer, with the
labelling number being the number of output values. Braces represent concatenation, black
arrows represent ReLU activation functions. The light green arrow is the identity function.
The dashed black arrow is a sigmoid activation function. The vector Fp is used as an input
for the Reflectance Network (R) (see Fig. 2).

3 Architecture Details

In this section we describe the architecture of both the Face Prior Network(’P) and Reflectance
Network(R). As briefly discussed in the main paper, P is a NeRF-based architecture and in
Fig. 1 we explain the full model in detail. Furthermore, R is also a NeRF-based design that
takes light direction and face prior features from the 9" layer of P. In addition, R uses density
values (o) predicted by P for volume rendering. We show R in Fig. 2.

3.1 Algorithm Design

To clarify our training, fitting, and finetuning processes we provide Figs. 3 to 5 here. The final
relighting is done as presented in Fig. 3 in the main paper.
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-» 256 —» 256 —» 256 —» 256 —» 256 —» 256 —» 128 ---» O
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Figure 2: The architecture of R is also based on NeRF [8]. R takes a feature vector Fp from
the 9" layer of P and incoming OLAT light direction @;. In addition, to synthesize an OLAT
image through volume rendering [8], the volume density o from P is used (see Fig. 1). For
the meaning of graphical elements see the caption of Fig. 1.

a sphere centered around the face of the .. .. ..
subject. For every subject each camera cap- @ (b) ©

tures 150 images (1 per light source). All Figure 6: We use a light stage dataset [15] that
the images are captured with the subject provides 150 different lighting conditions (a),
showing a neutral expression with their eyes 16 camera angles (b) and 353 subjects (c). We
closed. While capturing each frame, the brightened the images here, for better visual-
light sources were turned on one at a time, ization.

thus generating one-light-at-a-time (OLAT)

images. Fig. 6 gives an impression of the dataset.

4 Lightstage Dataset

We utilize a lightstage dataset [15] of 353
identities, illuminated by 150 point light
sources and captured by 16 cameras. The
light sources are distributed uniformly on

4.1 Lightstage Test Dataset

For experiments that require a ground-truth reference, we created such a reference by com-
bining lightstage images according to different environment maps: We randomly sampled 10
unseen identities from the lightstage dataset and synthesized naturally lit images using 10
randomly chosen unseen HDR environment maps, from the Laval Outdoor dataset [4] and the
Laval Indoor HDR dataset [3]. For all quantitative and qualitative experiments, we evaluate
only on the held-out views. For instance, given that the lightstage dataset has a total of 16
camera viewpoints, an evaluation method that takes three input views would be evaluated on
the remaining 13 held-out views.
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Figure 3: Training: First, we train the Face Prior Network along with the z;. Next, we jointly
train all the components in orange from the figure in an end-to-end manner. This includes
training the Reflectance Network.

Learnable
Parameters
Frozen
Parameters

x,d —p Volume

— FP—MLP —* Rendering

Face Prior Network

Figure 4: Fitting: Given an unseen test subject, we optimize z with frozen Face Prior Network
parameters. The Reflectance Network is not used during both fitting and finetuning (Fig. 5)
stages.

5 Results

In this section, we discuss the implementation details of our method and baselines. Further-
more we show more results on the H3DS [9] test dataset, for the task of simultaneous view
synthesis and relighting.

5.1 Implementation Details

In order to capture the geometry of multiple heads along with various natural illuminations,
we train the Face Prior Network P with 302 identities synthesized with 600 different natural
illuminations (see main paper, Sec. 3, last paragraph). The Reflectance Network R is super-
vised with only OLAT images. After learning a sufficiently good face prior, we jointly train
both the networks and sample OLAT images and naturally-lit images with equal probability.
During training, we optimize Eq. 8 (in the main paper) with a batch size of 1 using the Adam
Optimizer [6] and learning rates of 5 x 107> for both P and R, and of 5 x 10~* for the latent
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Figure 5: Finetuning: Upon convergence of the fitting process (Fig. 4), we jointly optimize z
and Face Prior Network to better capture the details of input data.

codes. We train stage 1 for about 2 days with a step size of 1.6 x 10° and stage 2 is trained
with a step size of 3.5 x 10° using 3 NVIDIA Quadro RTX 8000 GPUs for 5 days. During
test, we perform the fitting process for 10,000 steps with a learning rate of 1 x 10~ for the
latent code, followed by fine-tuning for 3000 steps with a learning rate of 3 x 10~° for P
using a single NVIDIA Quadro RTX 8000 GPU.

5.2 Baseline Implementation Details

For a fair evaluation, we retrain NeLF [12], IBRNet [13] and SIPR [14] on our lightstage
dataset. We train both NeLF and IBRNet using 16 views and ensure at least one front facing
view is included in each batch as required for both the methods. Since we train with a real
lightstage dataset, we estimate mask and depth maps from the Agisoft Metashape software
and use that as reference for training NeLF and IBRNet. Due to the noisy depth maps, we
found that lowering the weight of their depth loss by a factor of 2 was useful for training
NeLF. We also train PhotoApp with the lightstage dataset following the details from the
original paper [7]. We note, however, that PhotoApp cannot be trained with all 16 views as
they require poses that can be projected into StyleGAN space. Thus, we train with only 8
views that are closer to a frontal pose.

5.3 Results on Uncontrolled Data

We show more results of simultaneous relighting and view synthesis on the H3DS dataset [9].
We show results using three input views (see Fig. 7), two input views (see Fig. 8) and one
input view (see Fig. 9). Our technique produces photorealistic results and maintains the
input identity. The generated identities are also view-consistent, which is crucial for many
applications. Refer to the following supplemental videos for additional results —
Novel_View_Synthesis.mp4 and Novel_View_Synthesis_and_Relighting.mp4.

6 PhotoApp Analysis

We compare our method against PhotoApp [7]. PhotoApp utilizes the StyleGAN latent
space [5] and learns to edit the illumination and camera viewpoint in this space. The method
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Figure 7: Novel view synthesis and relightings of our method on the H3DS dataset [9]. Here,
we use 3 views as input. Target environment maps are shown in the lower left corners. Our
technique produces photorealistic results and maintains the input identity even at extreme

viewpoints.
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2-Input views  <—— Novel views ——  ——— Relit-views

Figure 8: Novel view synthesis and relightings results of our method on the H3DS dataset [9]
using 2 input views. Target environment maps are shown in the lower left corners. Our
technique produces photorealistic results and maintains the input identity even at extreme
viewpoints.
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1-Input views <—— Novel views —— ——— Relit-views ——

Figure 9: Novel view synthesis and relightings of our method on the H3DS dataset [9]. Here,
we use a single view as input. Target environment maps are shown in the lower left corners.
Our technique produces photorealistic results and maintains the input identity even at extreme
viewpoints.
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View Synthesis
Method PSNR | SSIM
PhotoApp 29.13 | 0.72
Ours 1-view | 22.49 0.77
Ours 2-views | 25.44 0.79
Ours 3-views | 26.67 0.82

Table 2: PhotoApp comparison on the lightstage test set for novel view synthesis. For Pho-
toApp we set the input and target illumination to be the same. While PhotoApp is limited
to a single view as input, VoRF can take multiple views as input. This clearly improves our
performance. Please refer to Sec. 6 for a discussion on PSNR.

is trained in a supervised manner using a lightstage dataset. While PhotoApp produces highly
photorealistic results as it utilizes the StyleGAN space, it suffers from three strong limita-
tions: First, the technique usually runs into a high risk of altering the original identity during
StyleGAN fitting and editing. Second, view-point editing usually leads to strong identity
inconsistencies between different views. And third, the StyleGAN embedding is limited
in handling specific viewpoints and thus can produce incorrect poses during editing. These
downsides severely limits PhotoApp’s abilities to synthesize viewpoints and relighting. VoRF,
on the other hand, maintains the input identity and produces view-consistent editing results:
Refer to Fig. 10 and Fig. 11 for sample results on the lightstage test set. We also show results
on the H3DS dataset (see Fig. 12). VoRF clearly maintains the input identity and produces
view-consistent results (see groundtruth in case of the lightstage dataset). However, PhotoApp
suffers from clear and strong artifacts as discussed.

For numerical evaluations, we report PSNR and SSIM for view synthesis only (see Tab. 2)
and view synthesis plus relighting (see Tab. 3). We have noticed that PSNR is not an ideal
metric for capturing the strong limitations of PhotoApp. However, these limitations are better
captured with SSIM as it is a structural metric. Further, in Tab. 4 we estimated the average
deviation from the groundtruth facial landmarks, which is a stronger indication of identity
alteration and pose accuracy during editing. Here, landmarks are estimated using [1] and we
report the mean of absolute difference of 68 face landmarks between the groundtruth and the
rendered faces. Thus, the lower the Landmark Loss in Tab. 4, the better the performance. As
expected, PhotoApp produces a significantly higher landmark error, almost twice as large as
ours, validating our qualitative observations.

We note that all qualitative results reported here are generated using a single view as input.
However, another advantage of our technique is to accept multiple viewpoints as input which
is not possible with PhotoApp. This allows VoRF to produce superior results when multiple
views are given as input. In Tab. 2 and Tab. 3 we show that with multiple input views(upto 3)
our method gives a higher SSIM score in comparison to PhotoApp.

7 NeLF Analysis

For a fair comparison against NeLF [12], we retrain it using the lightstage dataset. The
original NeLF model was trained using a synthetic dataset while VoRF is trained on a real
lightstage dataset. We observe that the orignal NeLF struggles to generalize on the H3DS
test dataset. We suspect that this is due to the mismatch in the data distribution. Thus for a


Citation
Citation
{Bulat and Tzimiropoulos} 2017

Citation
Citation
{Sun, Lin, Bi, Xu, and Ramamoorthi} 2021


12 RAO ET AL.: VORF - SUPPLEMENTAL

Identity 1 Identity 2

Ours PhotoApp

Groundtruth

Edit 1 Edit 2 Edit 3 Edit 1 Edit 2 Edit 3

Figure 10: Comparing PhotoApp [7] against our method during view synthesis on the light-
stage test set. Here, VORF takes a single view as input. PhotoApp suffers from strong identity
alternations and pose inaccuracies during editing. This leads to highly view-inconsistent
results. Our method, however, clearly resembles the groundtruth much better than PhotoApp.

Identity 1 Identity 2

Ours PhotoApp

Groundtruth

Edit 1 Edit 2 Edit 3 Edit 1 Edit 2 Edit 3

Figure 11: Comparing PhotoApp [7] against our method during simultaneous view synthesis
and relighting on the lightstage test set. Here, VORF takes a single view as input. Similar to
novel view synthesis (see Fig. 10), PhotoApp suffers from strong identity alternations and
pose inaccuracies during editing. This leads to highly view-inconsistent results. Furthermore,
in some cases the rendered lighting is also view-inconsistent (see PhotoApp, Identity 2). Our
method, however, clearly resembles the groundtruth much better than PhotoApp.
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PhotoApp

Ours

PhotoApp

Ours

Input Edit 1 Edit2 Edit 3 Edit 4

Figure 12: Comparing simultaneous view synthesis and relighting on the H3DS dataset
with single view input. PhotoApp produces inconsistent identities and illuminations across
different views. VoRF maintains the input identity and produces view-consistent results.

Relighting + View Synthesis
Method PSNR SSIM
PhotoApp 29.08 0.71
Ours 1-view | 20.21 0.69
Ours 2-views | 22.15 0.74
Ours 3-views | 22.80 0.76

Table 3: PhotoApp comparison on the lightstage test set for novel view synthesis and relight-
ing. While PhotoApp is limited to a single view as input, VORF can take multiple views. This
clearly improves our performance. Please refer to Sec. 6 for a discussion on PSNR.

Method Landmark Loss
PhotoApp 2060.25
Ours 1-view 1021.62

Table 4: We report the average deviation from the ground-truth facial landmarks on the
lighstage test set. Here, the smaller the Landmark Loss the more the predicted pose/identity
resembles the ground-truth. We use an illumination condition which leads to good landmarks
detection [1]. Our approach produces much better performance than PhotoApp.
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Identity 1

Identity 2

Different viewpoint synthesis

Figure 13: Viewpoint editing using our retraining of NeLF [12]. Here, we use 3 views as input.
NeLF performs decently for small angles around training views. However, its performance
degrades quickly as the target head pose becomes wider (see to the right).

fair evaluation of NeLF, retraining on our lightstage dataset would be necessary. Therefore,
we have trained NeLF using the same data split used for training our method. We used the
official implementation of NeLF from their project webpage. To further aid the training, we
ensured the presence of a frontal view for each training batch.

Fig. 13 shows results from our retraining of NeLF. Results indicate that NeLF can render
novel views for small angles around the training views, but struggles with wider variations
around such views (see to the right). To verify the correctness of our implementation, we
shared our results and sample of the training data with the authors of NeLF. The authors noted
that our results are plausible since the lightstage data contains sparse viewpoints, which is
challenging for NeLF to handle. They also confirmed that they observed a similar behaviour
of NeLF in the early stages of their project. While VoRF relies on global cues, NeLF relies
on local CNN-based features. This makes it difficult for NeLF to reason about the geometry
from sparse viewpoints. We observe similar shortcomings with IBRNet as well. In Fig. 14
we provide a qualitative comparison of NeLF, IBRNet+SIPR and VoRF for the task of simul-
taneous view synthesis and relighting using three input views on the lightstage dataset. We
observe that both NeLF and IBRBet+SIPR show significant artifacts. We see similar results
when we evaluate NeLF on the H3DS dataset with three input views as shown in Fig. 15.

8 OLAT Predictions

Fig. 16 and Fig. 17 demonstrates One-Light-At-A-Time (OLAT) images produced by our
method on the unseen subjects from the lightstage and H3DS datasets respectively. We show
results using different number of input views and render the OLATSs from different viewpoints.
The predicted OLATS capture important illumination effects and details such as hard shadows
and specularities. Please refer to the supplemental video — View_Dependent_Effects.mp4.

Please refer to the supplemental video (/50_OLAT_Rendering.mp4) for OLATSs rendered
at different viewpoints for multiple test identities from the H3DS dataset with three input
views.
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Input Ours NeLF IBRNet+SIPR

Figure 14: We show results for simultaneous view synthesis and relighting on the lightstage
dataset. We can observe that the baselines show significant artifacts as we render arbitrary
viewpoints.

ol 5 3
Input Novel views Ours-RL NeLF  Ours-RL NeLF

Figure 15: Novel view synthesis and relighting on the H3DS dataset [9]. Our technique
significantly outperforms NeLF especially at views far away from the training views.
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Inputs Ours GT Ours GT Ours GT Ours GT

Figure 16: Using the Reflectance Network, we can synthesize OLAT images for an unseen
identity. Our method captures view-dependent effects as well as accurate shadows and the
result closely matches the ground truth.

Our R renders an OLAT image given a light direction ®. Using the lightstage dataset,
we train R with 150 point light sources. This enables us to generate an OLAT volume
from any desired light direction, allowing us to use higher resolution environment maps
and have better approximation of the environment lighting conditions. To show this, we
render new a OLAT volume with 1321 point light sources by interpolating between the
existing light sources. We show this dense OLAT sampling result in the supplemental video
— Dense_OLAT_Rendering.mp4.

9 Ablation Study

In this section we evaluate the design choices of our work through multiple quantitative and
qualitative ablation studies.

9.1 Significance of Two-Step Optimization

We examine the significance of our two-stage optimization process to reconstruct a new test
identity. Our test time optimization first involves fifting the latent code z;, to the test subject
(with the weights of both P and R frozen). This is followed by a fine-tuning process where
we jointly update both z.;; and the weights of network P, i.e. @p.

We perform the fitting process with a learning rate of 1 x 103 for 10,000 iterations to
ensure that the z,. lies in the learnt face prior distribution. Then, assuming convergence, we
lower the learning rate to 1 x 10~ and jointly optimize 2, and @5 for 3000 iterations. Note
that we do not modify the weights of R in both the stages since we do not have access to
OLATs for our test subjects.

We evaluate the significance of this design choice on our lightstage test dataset for the
task of novel view synthesis. Quantitative results (Tab. 5) support our choice: Fit + FineTune
performs better than just Fit only. In Fig. 18 (left) we observe that the fitting stage recovers an
approximate face geometry, after which the fine-tuning recovers the missing identity-specific
fine details.
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Input views

OLAT predictions

Figure 17: OLAT predictions of our method for the test subjects from the H3DS dataset. We
show results with a single view as input (top), two views as input (middle) and three views as
input (bottom). We render the predictions from different viewpoints. The OLAT predictions
capture important illumination effects such as specularities and hard shadows.

9.2 Significance of the Reflectance Network

We evaluate the significance of the Reflectance Network in our proposed framework. In this
ablation study we evaluate for the task of simultaneous view synthesis and relighting, first
using only P, and then with our proposed framework, which involves both P and R.

To perform viewpoint editing and relighting using only P we modify the network design
slightly. Instead of illumination latent z.,, we directly input the downsampled HDR environ-
ment map and train P. This enables us to perform a one-to-one comparison with our full
model involving both P and R. To fit an unseen identity during test, we initialize the Zep, with
the environment map estimated from SIPR [11] trained on our lightstage dataset, followed by
our two-step optimization process to reconstruct the unseen subject.

Quantitative evaluations in Tab. 6 show that using a dedicated R for relighting improves
the overall performance by a good margin. This is evident in Fig. 18 (right) where we observe
that using just P fails to capture the environment illumination conditions completely. In
contrast, relighting using OLATs regressed from R closely matches the ground truth lighting
condition, thereby validating our design choice.

Fit+FineTune Fit only
PSNR | SSIM | PSNR | SSIM
26.67 | 0.82 | 22.39 | 0.71

With R Without R
PSNR | SSIM | PSNR | SSIM
22.80 | 0.76 | 20.81 | 0.72

Table 5: We summarize quantitative re-
sults to evaluate the significance of our
two-step optimization process. We ob-
serve that fitting +fine-tuning leads to bet-
ter performance.

Table 6: We present quantitative results
for emphasize the need for R. Clearly hav-
ing a dedicated R improves the relighting
quality.
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. . S .
Input Fit+Fine-tune Fit only Ground-truth with shading w/o-shading

Figure 18: Left: Performing the two-step optimization improves the overall quality during
view-synthesis. Right: Removing the Reflectance Network (‘“w/o shading”) leads to a clear
loss in quality during relighting.

9.3 Significance of number of OLAT's

In this section, we examine the significance of the quality of relighting by utilizing different
numbers of OLAT configurations: 50, 100, and 150 OLATs. We conduct evaluations for
simultaneous view-synthesis and relighting.

Since the original lightstage dataset contains 150 OLATS, we uniformly sample from the
original configuration to select 50 and 100 OLATconfigurations. Next, we train three differ-
ent Reflectance Network models with various OLAT configurations for the same number of
iterations. We summarize quantitative evaluations in Tab. 7 and observe that the quality of
relighting increases with the increase in the number OLATs. This is distinctively clear from
the Fig. 19, as the Reflectance Network trained with 150 OLATSs shows better results in com-
parison. We reason that an increase in the number of OLATSs leads to a better approximation
of the environment illumination and as a consequence, it improves the quality of relighting.
In summary, we conclude that a higher number of OLATs improves the quality of relighting.
In this work, we are restricted to 150 OLATS since it is the capacity of the lightstage dataset
available to us.

50 OLATs 100 OLATs 150 OLATs
Input | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
3-views | 19.70 | 0.72 | 21.22 | 0.73 | 22.80 | 0.76

Table 7: Influence of number of OLATSs for the task of simultaneous relighting and view-
synthesis. Using all 150 OLATS gives the best results. In general, we observe that quality of
relighting improves with the increasing number of OLATSs.

9.4 The importance of the Hard Loss (£})

In this section, we investigate the importance of the hard loss £;,. This loss constrains accumu-
lation weights w, to be sparse [10], thereby encouraging the face geometry to approximate
a surface. This measure prevents cloudy artifacts around the face as shown in Fig. 20 (see
red arrows). In our main experiments, we use a default value of 0.1 for the hard loss. Fig. 21
shows that using an over-emphasized value of 10 for the hard loss leads to severe artifacts.
In Tab. 8 we examine the importance of the hard loss using quantitative evaluations against
groundtruth. Here, we evaluate on the lightstage test set. As expected, completely removing
the hard loss leads to a strong drop in the PSNR and SSIM, as opposed to using it with
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GT 50 OLATSs 150 OLATs 150 OLATs

Figure 19: We show the significance of number OLATS on final relighting. During simul-
taneous view synthesis and relighting, we observe that with fewer OLATS, the Reflectance
Network struggles to accurately relight the environment illumination. Hence, using all the
150 OLATs of the lightstage dataset gives closest resemblance to the groundtruth.

Ly,=0.1 Lyp=0 Ly, =10
Input | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
3-views | 26.67 | 0.82 | 25.65 | 0.78 | 19.81 | 0.64

Table 8: Impact of the hard loss £;, on novel view synthesis on the lightstage test set. Our
default value of 0.1 for the hard loss produces the best results.

the default value of 0.1. However, using an over-emphasized value of 10 leads to very poor
performance.

9.5 Latent Space Design

Our approach uses separate latent codes for identity (z;;) and illumination (Z,,). During
training, we store one z;; per subject and one z,, per illumination condition, amounting to
302+ 600 codes. Each identity code receives supervision under different lighting conditions.
Similarly, each illumination code receives supervision from all subjects. If a single code was
used for each combination of identity and lighting condition, we would need to supervise
302 x 600 latent codes. Codes representing the same subject under different illuminations
would not be supervised jointly anymore. To investigate this, we compare a “disentangled”
model (i.e. 302 4+ 600 codes) to one that uses one code per combination (i.e. 302 x 600
codes). After training both models for the same number of iterations, we tabulate our findings
in Tab. 9: Having a single latent code for each identity and illumination leads to combinatorial
explosion of latent parameters, making it difficult to learn a good face prior. Fig. 22 shows
that using separate latent codes leads to better reconstructions of unseen subjects.

Disentangled Latent Codes | Single Latent Code
PSNR SSIM PSNR SSIM
26.66 0.82 24.53 0.78

Table 9: We evaluate the two latent space design choices on our lightstage dataset. We
observe that using a disentangled latent space design leads to an improved performance,
mainly attributed to a better face prior representation that helps generalize to unseen subjects.
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w/o hard loss with w/o hard loss with w/o hard loss with
hard loss hard loss hard loss

Figure 20: We visualize the importance of the hard loss £; on the final results. Here, we
show results from the view synthesis task. We use a default value of 0.1 for the hard loss.
Removing the hard loss (£, = 0) produces significant cloudy artifacts as shown by the red
arrows. Adding the hard loss (£, = 0.1) forces the volume to be more constrained around the
head and thus removes such cloudy artifacts.

Ly =10 Ly, =0.1 Ly =10 L, =0.1 Ly, =10 Lp=0.1

Figure 21: We visualize the impact of different values for the hard loss £;,. The default value of
the hard loss used in our experiments is 0.1. This figure shows that using an over-emphasized
value of 10 leads to strong artifacts.

Disentangled Single GT Disentangled Single
Latent code Latent code Latent code Latent code

Figure 22: We compare the design choice Distentantled Latent code (i.e. separate latent codes
for identity and illumintion) to the alternative Single Latent code (i.e. one latent code per
combination of identity and illumination), by evaluating for the task of view synthesis on our
lightstage dataset. The disentangled version leads to better reconstructions.
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9.6 Latent Space Interpolations

Our identity and illumination latent codes enable us to disentangle identity and illumination
and to modify them in isolation. Fig. 23 shows linear interpolations between various identities
of our lightstage data. Please refer to the supplemental video — Latent_Interpolation.mp4
for additional latent space interpolations results.

10 Discussion and Limitations

As discussed in the main paper, although our proposed method can render photo-realistic
human heads, some limitations still exist:

The light stage dataset (see Sec. 4) shows all subjects with closed eyes and neutral ex-
pressions only. However, even though our method thus only sees closed eyes and neutral
expression during training, it can handle test subjects with open eyes and natural expressions
during view synthesis. We showcase this ability in Figs. 25 and 26 and attribute it to the
fine-tuning of the Face Prior Network. The figures show that our approach can preserve eyes
and facial expressions at arbitrary viewpoints. However, for the task of relighting we rely on
the Reflectance Network to regress OLATSs, which is trained on the lightstage dataset which
neither contains open eyes nor different facial expressions. Hence, VoRF is unable to estimate
the reflectances of open eyes and mouth interiors during relighting. Please refer to supple-
mental video — Face_Expressions.mp4. We argue that this is a limitation inherited from the
dataset and not a shortcoming of our proposed method.

For the same reason, our Reflectance Network struggles to synthesize accessories such as
spectacles, earrings etc. Fig. 24

Lastly, if only one input view is given, our approach can sometimes generate regions of
geometry/texture that do not exist in reality, such as the hair in in Fig. 27. In such cases, the
information from a single view simply proves to be insufficient.
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Figure 23: Identity and illumination interpolations between lightstage training subjects.
Results show that our method disentangles the identity and illumination correctly.
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Input Novel views Relit views

Figure 24: We show simultaneous view synthesis and relighting on the CelebA dataset.
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1-Input views ~ <—— Novel views —— ——— Relit-views ——

Figure 25: We show simultaneous view synthesis and relighting on the CelebA dataset.
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I-Input views ~ <—— Novel views —— «———— Relit-views ———

Figure 26: We show results for simultaneous view synthesis and relighting on the FFHQ
dataset.
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Inputs 3-views 2-views 1-view

Figure 27: Our method produces good relighting and view synthesis for 3 input views, 2
input views or even 1 single input view. However, it may sometimes generate features that
do not exist in reality, but are not ruled out by the input: In the 1-view case presented here,
our method added hair, which does not contradict the information present in the single input
view (frontal view on the very left of this figure).
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