
Computers & Graphics (2021)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

An integer representation for periodic tilings of the plane by regular polygons

José Ezequiel Soto Sáncheza, Tim Weyrichb, Asla Medeiros e Sác, Luiz Henrique de Figueiredoa,∗

aIMPA, Rio de Janeiro, Brazil
bUniversity College London, United Kingdom
cFGV EMAp, Rio de Janeiro, Brazil

A R T I C L E I N F O

Article history:
Received October 23, 2020
Revised December 7, 2020
Revised January 18, 2021

Keywords: tessellations, symmetry, repre-
sentation schemes, geometric modeling,
procedural modeling

A B S T R A C T

We describe a representation for periodic tilings of the plane by regular polygons. Our
approach is to represent explicitly a small subset of seed vertices from which we system-
atically generate all elements of the tiling by translations. We represent a tiling concretely
by a (2+n)×4 integer matrix containing lattice coordinates for two translation vectors
and n seed vertices. We discuss several properties of this representation and describe
how to exploit the representation elegantly and efficiently for reconstruction, rendering,
and automatic crystallographic classification by symmetry detection.

c© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A tiling of the plane by polygons is a subdivision of the plane
into bounded closed polygonal faces. We consider only edge-to-
edge tilings, whose faces either are disjoint, share a vertex, or
share an edge. A tiling is periodic when it is invariant under two
independent translations of the plane. Restricting tilings to be
periodic and their faces to be regular polygons imposes much
rigidity while still allowing much interesting variety (Fig. 1).
Therein lies the lure of this subject. Indeed, understanding how
to tile the plane periodically with regular polygons is an absorb-
ing subject [1, 2, 3, 4] whose history [5] goes back 400 years to
Kepler’s book “Harmonices Mundi” of 1619. Yet, a complete
classification of these tilings remains elusive.

Besides their intrinsic mathematical interest, aesthetic appeal,
and artistic potential, tilings of the plane are useful in graphics
and geometric modeling [6, 3, 7, 8]. Crucial to any compu-
tational study or application of tilings is a representation that
makes it convenient to synthesize, compare, explore, and analyze
tilings. Using standard representations of subdivisions of the
plane to represent tilings introduces unneeded complexity and,
worse, potential numerical problems due to inevitable irrational
vertex coordinates. Thus, specialized representations are needed.

∗Corresponding author: Luiz Henrique de Figueiredo (lhf@impa.br)

Fig. 1. Variety of periodic tilings of the plane by regular polygons.

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 preprint accepted for publication CAG 3282 / Computers & Graphics (2021)

In this paper, we describe in detail a compact, low-complexity
representation for periodic tilings of the plane by regular poly-
gons that is built entirely on integer arithmetic and thus supports
highly efficient and robust algorithms. We describe our represen-
tation in §3: it is a (2+n)×4 integer matrix containing lattice
coordinates for two translation vectors and n seed vertices, from
which we generate the whole tiling by translations. These coordi-
nates come from representing the vertices of the tiling as points
in Z[ω], where ω is the principal 12th root of unity. We describe
how to reconstruct tilings from the representation in §4 and §5.
We describe how to find and classify the symmetries of a tiling
in §6. We discuss the properties of our representation at length
in §7, related work in §8, and directions for future work in §9.
Large collections of tilings in our representation and reference
implementations are freely available at our project web page [9].

Contributions. This paper describes a general, uniform, integer-
based representation for periodic tilings of the plane by regular
polygons, and discusses its properties in full detail. It signifi-
cantly expands our previous work on the subject [10, 11]. New
material includes: full details on the representation and its mo-
tivation, an in-depth discussion of its properties, and new algo-
rithms for tiling reconstruction and symmetry detection that are
simple and robust, since they do not rely on nearest-neighbors
searches and geometric computations with numerical tolerances.

2. Background, motivation, and overview

From now on, tiling means a periodic edge-to-edge tiling of
the plane by regular polygons. How does one design a computa-
tional representation for such tilings? We start with the natural
requirements. A good representation scheme should be:

• Simple and be easy to understand, create, and use.

• Concise and contain just enough data to reconstruct a tiling.

• Comprehensive and represent all possible tilings.

• Unambiguous so that each valid representation represents
exactly one tiling.

• Verifiable so that it is possible to decide whether a given
representation corresponds to a valid tiling.

• Comparable so that it is possible to decide whether two
given representations represent the same tiling.

Since a tiling is an infinite object, it is not possible to represent
explicitly all its topological elements. However, since the tiling
is periodic and repeats itself, it suffices to represent explicitly
a finite subset of its topological elements and explain how to
replicate it to cover the whole plane. We call such a subset a
patch for the tiling.

Standard topological data structures are too general for repre-
senting tilings: the rigid geometry and topology of tilings should
allow more concise representations than explicitly listing all
vertices, edges, and faces of a patch (see §4). A common way to
represent a tiling concisely is to exploit its symmetries to reduce
the amount of data needed (see §8). A symmetry of the tiling
is a rigid transformation (translation, rotation, reflection) of the
plane that leaves the tiling invariant. To use the minimal amount

of data to represent a tiling, we need to understand its symme-
tries completely. The mathematics for this are quite well known:
there are exactly 17 symmetry groups, and a simple procedure
finds the symmetry group of a tiling from its symmetries. Each
tiling has a minimal crystallographic fundamental region that
reconstructs the tiling when replicated by repeated application
of its symmetries. This region is the smallest possible patch for
the tiling and is well understood (see §6).

In this symmetry approach to representing tilings, the key
to satisfying the requirements above is to balance the amount
of geometric and topological data with the complexity of the
replication process, to ensure that a given region of the plane is
covered without repetitions. Moreover, finding the symmetries
of a tiling algorithmically requires a computational representa-
tion of the tiling.

Our approach avoids this dilemma and strikes a balance by
using the simplest topological elements, the vertices of the tiling,
and the simplest symmetries, the translations of the tiling. Then
the only geometric data required are coordinates for vertices
and translation vectors. As we explain in detail in §3, these
coordinates come from representing the vertices as complex
numbers, more precisely as points in Z[ω]. Our representation
satisfies all the requirements above (see §7). Moreover, our
representation allows finding all symmetries of a tiling efficiently
(see §6) using a simple data structure: a hash table that we call a
cloud of vertices (see §4).

Having proven its worth within our previous works [10, 11]
on rendering and acquisition of tilings, our representation is
both convenient and general enough to show great potential for
many more operations and analyses of tilings. Accordingly, the
remainder of this paper offers for the first time a comprehensive
account of the representation, presenting its properties, common
topological and geometric operations, and sample applications.

3. A representation for periodic tilings by regular polygons

We shall now describe in detail our integer representation for
periodic tilings of the plane by regular polygons, which we shall
call simply tilings from now on. We start with a few preliminary
notions about the discrete nature of the problem.

Rigidity. Only very few types of regular polygons can tile the
plane. A local constraint is how the angles of the faces fit around
a vertex of the tiling. We get ∑k≥3 nkαk = 360◦, when there
are nk faces of k sides around the vertex, each contributing an
internal angle αk = 180◦− 360◦

k . Therefore, ∑k≥3 nk
(
1− 2

k

)
= 2.

The 17 integer solutions of this equation give 21 possible face
configurations around a vertex, up to cyclic permutations and
reflections [5]. Due to global constraints, only the 15 configu-
rations shown in Fig. 2 can actually fit together without gaps
or overlaps to tile the plane in very specific, non-trivial ways.
Thus, tiling plane by regular polygons is a discrete problem with,
in a sense, rigid solutions. In particular, all tilings are made of
triangles, squares, hexagons, octagons, and dodecagons. There
is exactly one tiling that contains octagons: the truncated square
tiling composed solely of vertices of type J. We shall disregard
this singular tiling. This allows us to align the edges of all tilings
with the 12th roots of unity and thus represent vertices in Z[ω].

preprint accepted for publication CAG 3282 / Computers & Graphics (2021) 3

Nós Arquimedianos

Fig. 2. The 15 vertex types that appear in tilings by regular polygons [12].

Philosophy. We consider the vertices as the central elements of
the tiling. Our approach is to represent explicitly a small finite
subset of seed vertices from which we systematically generate all
vertices of the tiling by translations only, thus avoiding the com-
plexity of crystallographic fundamental regions. Our approach
is reminiscent of the interlocking regular systems of points dis-
cussed in the classic book by Hilbert and Cohn-Vossen [13,
chapter 2]. The edges and the faces of the tiling are easily re-
constructed from the vertices because the tiling is composed
of regular polygons (Fig. 3). We shall describe algorithms for
reconstructing the whole tiling from its vertices in §4.

Translation grid. A periodic tiling is invariant under two in-
dependent translations. The corresponding translation vectors
t1 and t2 induce a subdivision of the plane into an infinite grid

Fig. 3. From left to right, top to bottom: Vertices and seeds, interlocking
systems of points, edges, and complete tiling.

t1

t2

Fig. 4. Grid of translation cells, trans-
lation vectors at the origin (in black),
and basic translation cell (in gray).

!0

!1

!2
!3

!4

!5

!6

!7

!8

!9
!10

!11

Fig. 5. The twelve basic directions
in the complex plane.

of parallelograms called translation cells (Fig. 4). Invariance
means that everything in one cell of the grid is repeated exactly
in all cells. The basic translation cell T0 is the one containing the
origin: T0 = {λ1t1 +λ2t2 : λ1,λ2 ∈ [0,1)}. Each translation cell
is a translation of the basic cell by integer multiples of t1 and t2
and so can be written as T0 + n1t1 + n2t2 with n1,n2 ∈ Z. The
pair (n1,n2) is the id of the cell. By definition, and as illustrated
in Fig. 4, the basic translation cell is half-open, that is, open at
the sides not containing the origin. Different translation cells are
thus disjoint. Therefore, the translation cells partition the plane:
each point in the plane, and so each vertex of the tiling, belongs
to exactly one translation cell. However, the edges and the faces
of the tiling are not always completely inside a cell and often
straddle cell boundaries.

Translational equivalence. Two points p and q in the plane are
equivalent under the translations of the tiling if they coincide
when their translation cells are moved one on top of the other
by a translation. This happens exactly when p = q+n1t1 +n2t2
for some n1,n2 ∈ Z. In algebraic terms, p and q are equivalent
under translations exactly when they are in the same coset of
the translation lattice Zt1 +Zt2, a discrete additive subgroup
of R2 [14].

Seeds. Each translation cell contains exactly one representative
of each equivalence class of points. In particular, each translation
cell contains exactly one representative of each equivalence class
of vertices, and so contains the same number of vertices. The
vertices in the basic cell are called seeds. Thus, every vertex
of the tiling is equivalent to exactly one seed. The seeds and
their translations decompose the set of vertices into interlocking
regular systems of points sharing the same translation group in
the sense of Hilbert and Cohn-Vossen [13] (Fig. 3). The seeds
and the translation grid are the basis of our representation: the
seeds describe what needs to be replicated and the translation
vectors describe how they are replicated.

Flat torus. Modulo translational equivalence, the plane becomes
a flat torus: opposite sides of the basic cell are identified and
distances are measured on the plane. In other words, a flat torus
has the topology of a torus but the metric of the plane. The
difficulty in tiling the plane periodically with regular polygons
is how to place seeds in a parallelogram and join them in the
toroidal sense such that all polygon edges have the same length in

4 preprint accepted for publication CAG 3282 / Computers & Graphics (2021)

a0 a1 a2 a3
−1 0 2 1

2 1 −1 −1
0 0 0 0
0 0 0 1
0 0 1 1
1 0 0 0
1 0 0 1
1 1 0 0
2 0 −1 0

Fig. 6. A tiling and its basic elements. The translation vectors define the
basic cell (in blue), which contains the seeds (in black). The external repre-
sentation data is a (2+7)×4 integer matrix. The first two rows represent
the translation vectors. The remaining rows represent the seven seeds, one
of which is the origin (in red).

the plane. As we shall see in §5, the only possible parallelograms
for this task are those whose area is an integer linear combination
of the areas of an equilateral triangle and a square. This is
another manifestation of rigidity.

Abstract representation. Abstractly, our representation of a
tiling has two components: a pair of translation vectors that
define a translation grid for the tiling and a set of seeds in the
basic translation cell that represent every vertex of the tiling by
translations (Fig. 6); the polygons remain implicit. To make the
representation concrete we need to give coordinates to these ele-
ments. In principle, we could simply use Cartesian coordinates.
However, the Cartesian coordinates of the vertices in a tiling are
rarely exact rational numbers. (In fact, the only exception is the
square tiling composed solely of vertices of type S.) We seek a
numerically exact representation. We shall see presently how to
give integer coordinates to all elements. This leads us to discuss
the edges of the tiling.

Normalization. As in most of Euclidean geometry, we consider
tilings up to uniform scalings and rigid transformations (trans-
lations, rotations, reflections). To choose coordinates for the
translation vectors and the seeds, we must fix a scale, an origin,
and reference directions for orientation. We reduce the number
of choices by partially normalizing the tiling, as follows.

We normalize the scale of the tiling by taking edges of unit
length, since all edges have the same length, being sides of
adjacent regular polygons. We partially normalize the position
of the tiling by choosing one of the vertices as the origin. (We
shall see that this is a key choice.) We partially normalize the
orientation of the tiling by choosing a canonical set of directions
for the edges. Since we explicitly disregard the one tiling that
contains octagons, all tilings are made of triangles, squares,
hexagons, and dodecagons, and so the angles between edges are
all multiples of 30◦. Thus, we partially normalize the orientation
of the tiling by aligning the edges with the 12th roots of unity
in the complex plane. (This is another key choice, which is
natural in this context. Others independently reached the same
conclusion [15, 8].) These twelve basic directions are the powers
of ω = exp(2πi

12) =
√

3+i
2 , the principal 12th root of unity (Fig. 5).

This normalization of the geometry of the tiling is partial
because there is room for choosing the vertex to be the origin (not
all vertices are equivalent under translations) and for choosing
an edge and fixing a basic direction for it (not all edges are
equivalent under rotations). Once we fix a direction for a single
edge, the orientation of the whole tiling is rigidly fixed.

Lattice coordinates. We shall now make our representation con-
crete by giving integer coordinates to all vertices of the tiling.
This automatically gives integer coordinates to the translation
vectors since they take the origin to another vertex of the tiling.

The key idea is that every vertex can be reached by following a
path from the origin along the edges of the tiling. (Hence the im-
portance of placing a vertex at the origin.) Since edges have unit
length and are aligned with the twelve basic directions, which
are powers of ω , these paths are given by integer polynomial ex-
pressions in ω of degree less than 12 (Fig. 7). Thus, the vertices
form a subset of the cyclotomic integers Z[ω] (the set of integer
polynomial expressions in ω) and can be given 12-dimensional
integer coordinates. However, these coordinates are not unique.
For instance, ω6 and −1 are two different expressions for the
same point in the complex plane.

The matter is cleared by considering the minimal polynomial
equation that ω satisfies: ω4−ω2 + 1 = 0 (it corresponds to
the 12th cyclotomic polynomial). Every polynomial expres-
sion in ω is therefore equal to a unique cubic expression: its
remainder modulo the minimal polynomial ω4−ω2 +1. This
is the key observation here: Z[ω] is actually the set of all in-
teger polynomial expressions in ω of degree at most 3, and
different expressions represent different points. In other words,
{1,ω,ω2,ω3} is an additive basis for Z[ω] over Z, in the sense
that Z[ω] =Z1+Zω+Zω2+Zω3. In particular, each vertex of
the tiling is represented uniquely by four integers [a0,a1,a2,a3],
corresponding to the point a01+ a1ω + a2ω2 + a3ω3 ∈ Z[ω].
We call these integers the lattice coordinates of the vertex. (As
an additive group, Z[ω] � Z4, a lattice in R4.)

The lattice coordinates of a vertex are found by following any
path connecting the origin to the vertex, adding each edge in the
path to obtain a polynomial expression in ω (Fig. 7). This ex-
pression is then simplified to a cubic expression either by taking
its remainder modulo the minimal polynomial or equivalently

Vertices as integer linear combinations of basic directions

! + !10 + !11 + !0 + ! + !2 + !3 = !11 + !10 + !3 + !2 + 2! + 1

= V �O

Fig. 7. Paths joining vertices are given by integer polynomial expressions
in ω . This path from the blue origin to the red vertex is given by ω1+ω10+
ω11 +ω0 +ω1 +ω2 +ω3, which reduces to 2+ 3ω , since ω4−ω2 + 1 = 0.
Thus, the red vertex has lattice coordinates [2,3,0,0] in Z[ω].

preprint accepted for publication CAG 3282 / Computers & Graphics (2021) 5

by using the identities below, since only the basic directions
1,ω,ω2, . . . ,ω11 appear in paths:

ω4 =−1+ω2 = [−1,0,1,0]
ω5 =−ω +ω3 = [0,−1,0,1]
ω6 =−1 = [−1,0,0,0]
ω7 =−ω = [0,−1,0,0]

ω8 =−ω2 = [0,0,−1,0]
ω9 =−ω3 = [0,0,0,−1]
ω10 =−ω4 = [1,0,−1,0]
ω11 =−ω5 = [0,1,0,−1]

The conversion from a polynomial expression b0+b1ω+b2ω2+
· · ·+b11ω11 to lattice coordinates [a0,a1,a2,a3] is thus a simple
matrix multiplication. Although many different paths join the
origin to the vertex, the corresponding expressions simplify to
the same cubic expression, which depends only on the vertex.

Concrete representation. In our concrete representation, each
data item in the abstract representation (translation vector or
seed) is given by its lattice coordinates as a point in Z[ω], and
so is represented uniquely by four integers, as above. Thus,
each tiling is represented by a (2+n)×4 integer matrix, where
n is the number of seeds in the tiling. The first two rows of
the matrix represent the translation vectors and the remaining
n rows represent the seeds (Fig. 6). Exactly one of these rows
contains only zeros, because the origin is a seed. This integer
matrix is our concrete representation for the tiling. We also
call it the external representation, because it can be saved to
files, published, and shared. We shall see presently an internal
representation that complements the external representation.

In the example in Fig. 6, the translation vectors are

t1 = ω3 +ω2 +ω4 = [−1,0,2,1]
t2 = 1+ω10 +ω11 = [2,1,−1,−1]

and the seeds are

s1 = 0 = [0,0,0,0]
s2 = ω3 = [0,0,0,1]
s3 = ω3 +ω2 = [0,0,1,1]
s4 = 1 = [1,0,0,0]

s5 = 1+ω3 = [1,0,0,1]
s6 = 1+ω = [1,1,0,0]
s7 = 1+ω10 = [2,0,−1,0]

As we have explained above, these lattice coordinates are found
by adding the lattice coordinates of the basic directions followed
in a path from the origin to each vertex.

This completes the description of our representation of tilings.
We have acquired [11] and published [9] a large collection of
tilings in this representation. We shall now explain how to
reconstruct the tiling from a representation.

4. Topological primitives

The standard tool to represent a general subdivision of the
plane is a topological data structure [16, chapter 2] that explicitly
represents all topological elements (vertices, edges, faces) of the
subdivision and a subset of their adjacency relationships. A topo-
logical data structure complements the geometric information
given by the position of the vertices and the shape of the edges.
Most importantly, it provides convenient and efficient traversal
of the elements of the subdivision, for primitive tasks such as
finding the edges and the faces around a vertex, the vertices of a

Fig. 8. A circular window (in
blue). The inner cells (in red) in-
tersect the window. The outer
cells (in orange) form a ring
around the inner cells.

Fig. 9. The red vertices form the
star of the black vertex. The
edges are ω0,ω3,ω6,ω8,ω10 and
so the star is represented by the
list 〈0,3,6,8,10〉.

face, and the faces adjacent to a face. These tasks are vital for
rendering, processing, and analyzing the subdivision.

Although tilings are subdivisions of the plane, topological
data structures are too general for representing periodic tilings
of the plane by regular polygons, whose geometry and topology
are quite rigid. In sharp contrast, our representation does not
represent all the elements of a tiling, only a key finite subset of
its vertices: the seeds. Our representation does not represent
any adjacency relationships at all, but, as we shall see below, it
allows them to be easily and efficiently computed on demand.

The window. We shall describe how to use our representation to
reconstruct the tiling inside a given window, a bounded region
of interest in the plane (typically, but not necessarily, an axis-
aligned rectangle). Reconstructing the tiling means finding all its
elements (vertices, edges, faces) that can be seen in the window.

We start by finding all translation cells that intersect the win-
dow, which we call the inner cells (Fig. 8). This is equivalent
to “rasterizing” the window on the translation grid. The solution
depends on the geometry of the window and is outside the scope
of this paper. (It is relatively easy for a rectangular window.) We
assume that the problem has been solved and the set of inner
cells with their ids is available. Since the edges and faces of
the tiling often straddle cell boundaries, to reconstruct the edges
and faces in the window we also need to find all translation cells
adjacent to the inner cells. These outer cells form a ring around
the inner cells and provide complete toroidal neighborhoods for
the inner cells (Fig. 8). We assume that the set of outer cells
with their ids is available when needed.

Reconstructing vertices. To reconstruct the vertices of the tiling
in the window, we simply translate the seeds along the translation
vectors from the basic cell to each inner cell. This gives lattice
coordinates to all inner vertices. More precisely, the vertices
in an inner cell T = T0 + n1t1 + n2t2 are s+ n1t1 + n2t2, where
s runs through all seeds. Thus, the lattice coordinates of the
vertices in a cell are obtained from the lattice coordinates of the
seeds and the lattice coordinates of the translation vectors using
the id of the cell. The same procedure finds the outer vertices,
that is, those in the outer cells.

6 preprint accepted for publication CAG 3282 / Computers & Graphics (2021)

The vertex cloud. We have found it convenient to store inner and
outer vertices in a hash table indexed by their lattice coordinates,
which we call the cloud. The cloud maps lattice coordinates
of vertices to task-specific information about the vertices. For
topology reconstruction and symmetry detection, just the pres-
ence of the vertices in the cloud suffices. The keys for hashing
are typically a string like "1,2,3,4" or a 64-bit integer like
0x0001000200030004. The details of hashing are unimportant;
the important feature of the cloud is that querying a vertex based
on its lattice coordinates takes amortized constant time. This is
central for the simplicity and the efficiency of our algorithms,
because we can avoid nearest-neighbors searches and geometric
computations with numerical tolerances. The cloud is an explicit
internal representation of the tiling that complements the com-
pact implicit external representation and is consistent with our
focus on the vertices as the central elements of the tiling.

Edges around a vertex. The star of a vertex v is the list of ver-
tices w such that vw is an edge of the tiling, ordered circularly
around v (Fig. 9). The stars provide convenient systematic traver-
sal of the edges around a vertex, a basic topological primitive.

Let v be an inner vertex. Since each edge vw in the star of v is
aligned with a basic direction ωk, in the sense that w = v+ωk,
we represent the star of v by the ordered list of the exponents
that appear in these edges (Fig. 9). We find this ordered list
in constant time by testing whether v+ωk is in the cloud for
k = 0,1, . . . ,11, as in Algorithm 1. The lattice coordinates of
v+ωk, needed for querying the cloud, are easily computed from
the lattice coordinates of v and the lattice coordinates of ωk

given in §3.

Algorithm 1

procedure star(v)
s← []
n← 0
for k = 0 to 11 do

if v+ωk in cloud then
n← n+1
s[n]← k

end
end
return s,n

end

Reconstructing edges. We reconstruct the edges of the tiling in
the window by finding the stars of the inner vertices. The stars
actually give oriented edges. Therefore, reconstructing edges
with stars finds the edge between two inner vertices v and w
twice: once as vw and once as wv. Tasks that need to process
edges exactly once, such as rendering, should process an edge vw
only when w is an outer vertex or v < w in the lexicographical
order of their lattice coordinates, as in Algorithm 2. Running
Algorithm 2 for all inner vertices processes exactly once all
edges of the tiling that are visible in the window.

Faces around a vertex. A corner of a face is a vertex v and a
pair of circularly adjacent entries k and k′ in the star of v. If

Algorithm 2

procedure edges(v)
for k = 0 to 11 do

w← v+ωk

if w in cloud and (w is outer or v < w) then
process(v,w)

end
end

end

k′ < k, take k′+12 instead. (For the vertex in Fig. 9, two corners
are v,0,3 and v,10,12.) The internal angle of the face at v is
(k′− k)30◦ and so determines the number m of sides of the face
at that corner:

(k′− k)30◦ =
(

1− 2
m

)
180◦ =⇒ m =

12
6− (k′− k)

The table below summarizes the results of this computation:

internal angle 60◦ 90◦ 120◦ 150◦

k′− k 2 3 4 5
m 3 4 6 12

The list of m for all pairs k,k′ gives the vertex type as in Fig. 2.
For the vertex in Fig. 9, the list of k′− k is 〈3,3,2,2,2〉 and so
the list of m is 〈4,4,3,3,3〉, which gives vertex type T:3-3-3-4-4
after a cyclic reordering.

When traversing the edges of a face with m sides in coun-
terclockwise order, the directions of the edges change by the
external angle 360◦

m . Therefore, the vertices of the face having
a corner at v,k,k′ are obtained by starting at v, moving in direc-
tion k, adding 12

m to the direction mod 12, and repeating, as in
Algorithm 3. Running Algorithm 3 for all pairs of circularly
adjacent directions k,k′ in the star of v finds all faces around v.

Algorithm 3

procedure face(v,k,k′)
m← 12

6−(k′−k)
f ← []
for j = 1 to m do

f [j]← v
v← v+ωk

k← (k+12/m) mod 12
end
return f

end

Reconstructing faces. To avoid reconstructing faces multiple
times (once per adjacent vertex), we do it only when the vertex is
the lowest leftmost vertex of a face. In this case we say that the
vertex is the anchor of that face (Fig. 10). Anchors correspond to
corners having directions k,k′ ∈ {10,11,0,1,2,3}. There are at
most two such corners at a vertex because the internal angles of
the faces are at least 60◦. Algorithm 4 finds the faces anchored at
a given vertex, if any. (Here star is an extension of Algorithm 1
that accepts a range of directions to test.) Running Algorithm 4
for all inner vertices processes exactly once all faces of the tiling
that are visible in the window.

preprint accepted for publication CAG 3282 / Computers & Graphics (2021) 7

Fig. 10. Faces and their anchors. The anchor of a face is the lowest leftmost
vertex of a face. A thin line joins the center of a face to its anchor.

Algorithm 4

procedure faces(v)
s,n← star(v,10,15)
for j = 1 to n−1 do

k← s[j]
k′← s[j+1]
process(face(v,k,k′))

end
end

Faces adjacent to an edge. The faces adjacent to an edge corre-
spond to a pair of adjacent corners at one of its vertices. More
precisely, if the edge is vw and v,k,k′ and v,k′,k′′ are adjacent
corners with w = v+ωk′ , then the faces adjacent to the edge vw
where are given by face(v,k,k′) and face(v,k′,k′′).

Finding duals. The dual of a tiling is the “tiling” whose vertices
are the centers of the faces of the original primal tiling and
whose edges join two centers when the corresponding primal
faces share an edge. Although duals rarely have regular faces
(hence the quotes above), they too are very interesting periodic
subdivisions of the plane with the same strong aesthetic appeal
and artistic potential (Fig. 11).

Fig. 11. A tiling (in color) and its dual (in white).

A dual edge connects the centers of the faces of two adjacent
corners at the same primal vertex. A dual face has as vertices
the centers of the faces around a primal vertex. Thus, finding
the dual tiling reduces to topological primitives over the primal

tiling, combined with the geometry of face centers. These centers
are the dual vertices and the central elements of the dual tiling.

The center of a face can be computed as the barycenter of its
vertices or as the midpoint of a pair of opposite vertices in the
face, when the face is not a triangle. When the vertices of the
face are not readily available, the center c can also be computed
directly from a face corner v,k,k′ by solving

(v− c)ω12/m = (v+ω
k)− c

since ω12/m gives the central angle of the face and v+ωk is the
next vertex after v; m is computed from k′− k as before. In the
simplest case, v = 0 and k = 0 (the vertex is at the origin and the
first edge is horizontal) and we get

cm =
1

1−ω12/m

This point can be written explicitly in (fractional) lattice coordi-
nates as follows:

m 3 4 6 12

cm
1
3 [1,0,1,0]

1
2 [1,0,0,1] [0,0,1,0] [0,0,1,1]

In the general case, the center of a face having a corner at
v,k,k′ is v+ cmωk, corresponding to a rotation in the direction k
followed by a translation to v. The multiplication cmωk is easily
done using the lattice coordinates of the powers of ω given in §3.
It is convenient to write the fractional lattice coordinates of face
centers uniformly with denominator 6, that is, in 1

6 Z[ω].

Local reconstruction. Everything that happens in the basic cell
is repeated exactly in all cells. Therefore, it suffices to recon-
struct the tiling around the seeds, that is, by taking the basic
cell as the window. The set of all edges emanating from the
seeds is the skeleton of the tiling. The set of all faces anchored
at the seeds is the patch of the tiling (Fig. 12). These funda-
mental pieces are translational units: they can be repeated by
translations to reconstruct the whole tiling in large windows.

This alternative, local reconstruction does not require storing
all vertices in the cloud, just the ones in the basic cell and in
its outer cells, nine cells in all. On the other hand, it contains

Fig. 12. Skeleton (left) and patch (right) of a tiling. The basic cell is the
central parallelogram in gray (left). It is surrounded by eight outer cells.

8 preprint accepted for publication CAG 3282 / Computers & Graphics (2021)

duplicate vertices and edges. This duplication may be relevant
for rendering, modeling, and further processing. The tradeoffs
between local and global reconstruction are analogous to those
between retained and immediate mode in graphics. We find
global reconstruction easier to understand and use.

5. Geometric operations

The topological primitives described in §4 are exact, integer
algorithms: they use lattice coordinates directly and never need
Cartesian coordinates. Rendering a tiling requires the Cartesian
coordinates of its vertices, but only at the last moment, before
issuing graphics primitives in floating-point coordinates. The
traversal of the topological elements to assemble graphics prim-
itives is entirely based on integer coordinates, which attests to
the appeal of our numerically robust representation.

Cartesian coordinates. The Cartesian coordinates of the addi-
tive basis {1,ω,ω2,ω3} of Z[ω] are given by

1
ω

ω2

ω3

=

cos(0◦) sin(0◦)
cos(30◦) sin(30◦)
cos(60◦) sin(60◦)
cos(90◦) sin(90◦)

(e1
e2

)
=

1 0
√

3
2

1
2

1
2

√
3

2
0 1

(

e1
e2

)

or, more concisely, W = BE. Here, e1,e2 is the canonical basis
of R2 �C. Therefore, the Cartesian coordinates (x,y) of a vertex
with lattice coordinates [a0,a1,a2,a3] are

(
x y

)
=
(
a0 a1 a2 a3

)
B =

1
2

(
2a0 +a2 +a1

√
3

a1 +2a3 +a2
√

3

)T

Thus, the Cartesian coordinates of the vertices can be determined
from their lattice coordinates with as much precision as needed,
since the fractional part of the Cartesian coordinates comes
from a single multiplication by

√
3, eliminating the scope for

numerical cancellation.

Grid coordinates. An important geometric task when process-
ing periodic tilings is locating a point p in the plane with respect
to the translation grid, that is, finding the translation cell that
contains p. This problem is easily solved by expressing p with
respect to the basis formed by the translation vectors t1, t2. In-
deed, if p = λ1t1 +λ2t2, then the translation cell that contains p
is T0 +n1t1 +n2t2, where T0 is the basic cell and ni = bλic. We
call λ1,λ2 the grid coordinates of p.

The natural way to find the grid coordinates of p from its
Cartesian coordinates is to use the Cartesian coordinates of t1, t2,
which are found from their lattice coordinates as above:(

t1
t2

)
=

(
a11 a12 a13 a14
a21 a22 a23 a24

)
W = AW = ABE

The Cartesian coordinates of t1, t2 are the rows of the 2× 2
matrix AB. This matrix is invertible because t1, t2 are linearly
independent. Thus, the grid coordinates of p = (x,y) are(

λ1 λ2
)
=
(
x y

)
(AB)−1

When p has lattice coordinates [a0,a1,a2,a3] and grid coordi-
nates λ1,λ2, then

(
a0 a1 a2 a3

)
W = p =

(
λ1 λ2

)(t1
t2

)
=
(
λ1 λ2

)
AW

and so (
a0 a1 a2 a3

)
=
(
λ1 λ2

)
A

Therefore, (
λ1 λ2

)
=
(
a0 a1 a2 a3

)
A+

where A+ = AT(AAT)−1 is the pseudoinverse of A, which satis-
fies AA+ = I2. Note that AAT is invertible because A has row
rank 2 since the translation vectors are linearly independent. It
is easy to compute (AAT)−1 explicitly because AAT is a 2× 2
matrix with integer entries. In particular, (AAT)−1 has rational
entries with det(AAT) in the denominator. Thus, every point
in Z[ω] has rational grid coordinates.

Lattice reduction. Grid coordinates are useful for lattice reduc-
tion: given a vertex v of the tiling, find the seed s that is equiv-
alent to v under translations. By definiton, s = v mod L, where
L=Zt1+Zt2 is the translation lattice. Given the grid coordinates
λ1,λ2 of v computed as above, we have that s = v−n1t1−n2t2
is a vertex in the basic cell and so is a seed. (Here, as before,
ni = bλic.) Therefore, s = v mod L. As we shall see in §7, lattice
reduction is instrumental in testing the validity of a representa-
tion and in deciding the equivalence of two representations.

Area. Recall that the Cartesian coordinates of the translation
vectors are the rows of the 2×2 matrix AB. The absolute value
of the determinant of this matrix gives the area of the basic cell,
which we call the area of the tiling. The area is given explicitly
in terms of the lattice coordinates of t1, t2 by 1

2

∣∣a+b
√

3
∣∣, where

a and b are integers:

a = 2a11a24 +a11a22 +a12a23 +a13a24−2a14a21−a12a21−a13a22−a14a23

b = a11a23 +a12a24−a13a21−a14a22

These two integers a and b are unique up to sign because
√

3 is
irrational. In particular, the area is zero iff a = b = 0.

The area does not depend on the choice of translation vectors.
Indeed, two pairs of translation vectors T and T ′ determine the
same translation lattice iff there is a 2×2 unimodular matrix U
such that T ′ =UT . (A unimodular matrix is an integer matrix
with determinant ±1, or equivalently, an integer matrix with
integer inverse.) Write T = AW and T ′ = A′W as above. Then,
T ′ = UT iff A′ = UA, because the basic directions in W are
linearly independent over Z. Therefore, det(A′B) = det(UAB) =
det(U)det(AB) =±det(AB), and so the area is the same.

The area of a minimal translation cell is a simple measure
of the complexity of a tiling. Indeed, the area of the basic cell
constrains the number of seeds since they must be one unit
apart in the flat torus. For tilings consisting of just triangles and
squares, which have the highest density of vertices, the formula
for Euler’s characteristic of the torus implies area≤ n≤ 2 area,
where n is the number of seeds.

preprint accepted for publication CAG 3282 / Computers & Graphics (2021) 9

6. Symmetry

We shall now explain how to find the symmetry group of a
tiling by looking at its vertices, the central elements of the tiling.

Symmetries. A symmetry of a pattern in the plane is a rigid
transformation of the plane (translation, rotation, reflection) that
leaves the pattern invariant. The symmetries of a pattern form
a group, its symmetry group. The symmetries of periodic pat-
terns in the plane are well understood and have been completely
classified: there are exactly 17 symmetry groups, known as the
wallpaper groups [2]. Once one knows the symmetries of a
pattern, its wallpaper group is found by following the flowchart
in Fig. 13, which was proposed by Washburn and Crowe [17]
and is widely used in the literature [18].

Is there a
glide reflection in

an axis that is not a
reflection axis?

Is there a
glide reflection?

Are all
rotation centers

on reflection axes?

Is there a
reflection?

Is there a
reflection?

Are there
reflections in two

directions?

Is there a
glide reflection?

Are there reflec-
tions in lines that
intersect at 45°?

Are all rotation
centers on

reflection axes?

Is there a
reflection?

Is there a
reflection?

Is there a
reflection?

What is the
smallest rotation?

cm

pm

pg

p1

pmm

cmm

pmg

pgg

p2

p4m

p4g

p4

p3m1

p31m

p3

p6m

p6

yes

no

yes

no

yes

no

yes

no

yes

no

yes
none

180°

no

yes

no

yes

no

yes

no

no

yes

no

yes

no

yes

90°

120°

60°

Fig. 13. Washburn–Crowe [17] flowchart for classifying a symmetry group
into a wallpaper group using the crystallographic notation (after [18]).

Methodology. To find the symmetry group of a tiling, we need to
find the rigid transformations of the plane that leave it invariant.
A translation must send every vertex to another vertex. A rotation
must be centered at a vertex, at the centroid of a face, or at the
midpoint of an edge. A reflection must be across an edge, across
the bisector of an edge, or across the bisector of an internal
angle of a face. Since the tiling is invariant under translations,
it suffices to consider the local symmetries of the tiling, that
is, those originating in the patch. Thus, there are only a few
candidate symmetry transformations for a given tiling.

Let σ be a candidate symmetry for the tiling. Since the tiling
can be reconstructed from its vertices, σ leaves the tiling invari-
ant iff σ maps vertices to vertices. In fact, because σ is rigid, it
leaves the tiling invariant iff it maps the key vertices (the seeds
and t1, t2) to vertices of the tiling. We test this using the cloud;
we just need to ensure that the cloud contains the images of the
key vertices under all local symmetries of the tiling. It turns
out that it suffices to add to the cloud all vertices inside the disk
centered at the centroid of the basic cell with radius 4D, where
D is the diameter of the basic cell.

Translations. The subgroup generated by the translation vectors
of a tiling may not be the smallest translation subgroup because
the representation of the tiling may not be a minimal one (see §7).
To find the smallest translation subgroup, we test for each seed s0
(except the origin) whether the translation by s0 leaves the tiling
invariant, as follows: for each seed s we check whether s+ s0
is in the cloud. If they all are, then s0 defines a translation
for the tiling. Thus, since there are n seeds, in time O(n2) we
find all possible candidates for minimal translation vectors for
the tiling. Among those, we take as t1 the smallest translation
vector and as t2 the smallest translation vector that is linearly
independent with t1. However, by construction, these vectors
are constrained to lie inside the original basic cell and so may
not be the smallest possible ones, even though they define the
smallest translation subgroup. The best translation vectors are
found using Algorithm 5, an algorithm by Lagrange and Gauss
that generalizes the Euclidean algorithm for finding the greatest
common divisor of two integers [14]. (Here dµc= dµ−0.5e is
the integer nearest to µ .) Although it is best understood in the
plane, this algorithm works for every pair of linearly independent
vectors in any dimension and so can be applied in R4 directly to
the lattice coordinates of t1 and t2.

Algorithm 5

procedure minbasis(v1,v2)
repeat

if ‖v1‖> ‖v2‖ then
swap v1 and v2

end
µ ← (v1 · v2)/(v1 · v1)
v2← v2−dµcv1

until ‖v1‖ ≤ ‖v2‖
return v1, v2

end

Rotations. We test all rotations centered at the seeds, at the
centroids of the faces of the patch, and the midpoints of the
edges of the patch. The possible rotation angles are 60◦, 90◦,
120◦, 180◦. Thus the rotations correspond to multiplication
by ω2, ω3, ω4, ω6. It turns out that all these rotations can
be expressed as integer matrices acting on lattice coordinates,
even though centroids and midpoints may have fractional lattice
coordinates (see §4).

A rotation around a seed that leaves the tiling invariant must
leave the star of the seed invariant. While this severely restricts
the possible rotations around a seed, it is simplest to test all four
possible rotations around a seed. A rotation around the centroid
of a face that leaves the tiling invariant must be of an angle that
is a multiple of the central angle of the face. A rotation around
the midpoint of an edge must be of 180◦. In all cases, we test
the rotations in increasing order of angle and stop as soon as we
find a rotation that works, if any.

Reflections. A reflection that leaves the tiling invariant must
be across an edge, across the bisector of an edge, or across the
bisector of an internal angle of a face. All these reflections can
be expressed as integer matrices acting on lattice coordinates.

10 preprint accepted for publication CAG 3282 / Computers & Graphics (2021)

Glide reflections. A glide reflection is a reflection across a line
followed by a translation along that line. They are more complex
than the other symmetries and harder to detect visually.

Let γ = τρ be a minimal glide reflection that leaves the tiling
invariant. Here τ is a translation and ρ is a reflection across the
axis of τ . Then, γ2 = τ2 since ρτ = τρ and ρ2 = id. Therefore,
τ2 must be a minimal translation that leaves the tiling invari-
ant and so τ must be of the form τ = 1

2 (n1t1 + n2t2), where
n1,n2 ∈ {−2,−1,0,1,2}; this is very useful, since the mirror
is the line containing τ . Since the transformed points must be
in Z[ω], glide reflection axes must pass through seeds or mid-
points of edges of the patch. This gives the possible candidates
for glide reflections that leave the tiling invariant.

Transitive equivalence. Two points in the plane are transitively
equivalent with respect to a given symmetry group when there is
a symmetry in that group that takes one point to the other. Tran-
sitively equivalent vertices in a tiling must have the same type
according to Fig. 2. A tiling is k-uniform when it has k equiva-
lent classes of vertices. A tiling is m-Archimedean when it has
m types of vertices. Using our symmetry detection algorithm,
we have classified all tilings in the collections acquired [11]
and have confirmed the classification given by Galebach [19].
The supplementary material for this paper contains examples of
tilings having each of the 17 wallpaper groups.

Crystallographic fundamental region. Each tiling has a mini-
mal crystallographic fundamental region that contains exactly
one representative of each transitive equivalence class of its
symmetry group. Naturally, the crystallographic fundamental
region is smaller than the basic translation cell. In fact, the
basic translation cell can be decomposed into copies of the
crystallographic fundamental region under symmetries. The
rigid geometric structure of this decomposition was identified
by Schattschneider [20], who thus explained how to reconstruct
the crystallographic fundamental region of the tiling from its
wallpaper group. The tiling can be reconstructed from its crys-
tallographic fundamental region by repeated application of its
symmetries. While mathematically elegant, this reconstruction
is computationally much more complex than the reconstruction
described in §4, because close attention is required to handle
duplicate vertices and to reconstruct faces from its pieces.

7. Properties of the representation

We shall now discuss some properties of our representation.
We follow closely the framework proposed by Requicha [21]
for discussing representation schemes and their properties. A
representation scheme is a relation from a modeling space M of
mathematical objects to a representation space R of syntactically
correct representations. In other words, a representation scheme
is a set of pairs (m,r) ∈ M× R. In our case, the modeling
space M is the space of all periodic tilings of the plane by regular
polygons, up to Euclidean similarity. The representation space R
is the set of all (2+n)×4 integer matrices, where n≥ 1. These
matrices are interpreted according to the concrete representation
defined in §3: each row contains lattice coordinates of a point
in Z[ω]; the first two rows represent the translation vectors; the

remaining n rows represent the seeds. In the remainder, we
discuss properties of our representation organized by Requicha’s
criteria for a representation scheme.

Domain. The domain of a representation scheme is the set of
all objects in M that can be represented in R. The domain
characterizes the descriptive power of the scheme. As we have
argued in §3, all tilings can be represented in our scheme after
applying a Euclidean similarity for normalization. Therefore,
the domain of our representation is the full modeling space of all
periodic tilings of the plane by regular polygons, up to Euclidean
similarity. In this sense, our representation is comprehensive.

Validity. The set of valid representations is the range of the
representation scheme, that is, the set of all representations
in R that represent an object in M. Each representation is a
(2+ n)× 4 integer matrix. Under the concrete interpretation,
this matrix corresponds to a finite non-empty set of cosets of
an additive subgroup of Z[ω] of rank at most 2: the first two
rows generate a subgroup of Z[ω] and the remaining n rows are
coset representatives for this subgroup. A valid representation
is a matrix that represents a tiling. Not every representation
is valid: not every matrix corresponds to a tiling because the
matrix neither contains nor implies any geometric constraints,
such as edges having unit length. At the very least, the matrix
must satisfy three basic requirements:

• The two translation vectors must be linearly independent
in R2: equivalently, the area of their parallelogram cannot
be zero. This can be checked exactly using the lattice
coordinates of the translation vectors, as explained in §5. If
the check fails, the representation is not valid.

• The seeds must be inside the basic cell: a point in Z[ω] is a
seed iff it is equal to its reduction modulo the translation
lattice. This can be checked by using grid coordinates, as
discussed in §5. If the check fails, the representation is not
valid; but it can be repaired by using the reduced points
instead of the original points.

• One of the seeds must be the origin: this is trivial to check.
If the check fails, the representation is not valid; but it can
be repaired by adding the origin as a seed.

The important requirement is that a matrix does represent a
tiling. We can check this by trying to reconstruct the patch
of the tiling, that is, the faces anchored at the seeds (Fig. 12).
If the reconstruction succeeds, then the representation is valid,
because we can reconstruct the whole the tiling by translating
the patch. We do not need to fully reconstruct the faces of
the patch, just check that it can be done. Start by using the
basic cell as a window, adding the seeds as inner vertices and
the corresponding outer vertices to the cloud, as in the local
reconstruction described in §4. Then compute the star of the
seeds with Algorithm 1 and run Algorithm 6 (a simplified version
of Algorithm 3) for the corners at each seed. The representation
is valid iff Algorithm 6 succeeds for all seeds. No gaps exist
between faces because vertex stars must be consistent [22]. In
summary, not every (2+n)×4 integer matrix represents a tiling,
but we can test whether it does in time O(n).

preprint accepted for publication CAG 3282 / Computers & Graphics (2021) 11

Algorithm 6

procedure facetest(v,k,k′)
for j = 1 to m do

m← 12
6−(k′−k)

v← v+ωk

k← (k+12/m) mod 12
if v not in cloud then

return false
end

end
return true

end

Unambiguous. A representation r in R is unambiguous when
there is exactly one object m in M that is represented by r.
A representation scheme is unambiguous when all valid repre-
sentations are unambiguous. Our representation for tilings is un-
ambiguous because a tiling can be unambiguously reconstructed
from a matrix that represents it, if the matrix does represent a
tiling.

Uniqueness. A representation scheme is unique when all valid
representations are unique: every object in M has exactly one
representation in R. As remarked by Requicha [21], most rep-
resentation schemes for geometric objects are not unique for
conceptually trivial reasons: duplications and permutations of el-
ements listed in the representation (when lists are used as proxies
for sets) and position of geometric elements. Our representation
for tilings is subject to this trivial non-uniqueness: the order
of the translation vectors and of the seeds in the matrix is con-
ceptually immaterial but gives different matrices. (Our abstract
representation does not suffer from this non-uniqueness because
it uses sets, but it cannot be used as a representation space.)

The choices made during normalization are also sources of
non-uniqueness: the vertex chosen to be the origin and the ori-
entation of the tiling with respect to the basic directions directly
affect its matrix representation. This is an inevitable conse-
quence of defining M as the space of tilings up to Euclidean
similarity.

Our representation suffers from non-uniqueness also for non-
trivial algebraic reasons: Different pairs of translation vectors
can define the same translation lattice. More precisely, given a
pair of translation vectors T = AW , the pair of translation vectors
given by T ′ =UAW define the same translation lattice when U is
2×2 unimodular matrix. There are infinitely many unimodular
matrices. If the seeds are given by SW , then S′ = USW are
the corresponding seeds. In other words, the matrices R and
R′ =UR define the same tiling. Thus, every tiling has infinitely
many equivalent matrix representations.

Finally, there is the related issue of minimality, which we have
avoided until now. Redundant information is a source of non-
uniqueness. A representation that includes duplicate seeds is
trivially redundant. Indeed, the matrix means to provide a set of
seeds, but it can only provide an ordered list of seeds. Duplicate
seeds are inconvenient but harmless: the same set of vertices,
and hence the same tiling, will be reconstructed. Duplicate seeds
can be removed by reduction modulo the translation lattice.

Nontrivial redundancy is easy to create: Take as new translation
vectors t ′1 = n1t1 and t ′2 = n2t2, with n1,n2 ∈ Z∗, and take as
new seeds the vertices inside the parallelogram defined by t ′1, t

′
2.

Then the tiling is also represented by the larger matrix implied
by these new elements. This raises the question: how to remove
all redundancy from a given representation and convert it into
a minimal one? This cannot be answered merely by looking
at the translation vectors: they may not be integer multiples of
vectors in another pair; even when they are, the seeds may not
be redundant. We handle minimality ab initio, by finding a pair
of minimal translations vectors for the tiling directly from its
vertex cloud, as discussed in §6.

Equivalence. Closely related to uniqueness is the issue of de-
ciding whether two representations define the same tiling. This
is a crucial task for identifying and removing duplicate tilings
when acquiring [11] or generating large collections of tilings
by systematic enumeration. The simplest approach to deciding
equivalence of two representations is to generate two large ver-
tex clouds, one for each representation, and test whether they
match after applying a translation or a rotation. More precisely,
for each seed in one representation, translate the translation grid
so that the seed becomes the origin. Then, test the vertex cloud
containing the vertices in the cells adjacent to the basic cell as
follows. For each basic direction ωk, rotate the vertex cloud
about the origin by multiplying by ωk, and check whether the
rotated vertex cloud is contained in the vertex cloud of the other
representation (see §6). Finally, repeat the tests after inverting
the roles of the two representations.

Conciseness. A representation should contain just enough in-
formation to represent an object. Some redundancy is allowed,
if it simplifies some operations. Our representation for tilings is
very concise, even when the representation is not minimal. By
definition, minimal representations contain no redundancy. The
entries in the matrices of minimal representations are typically
small integers.

Ease of creation. Our representation for tilings is suitable for
both manual creation and automatic extraction from images. We
described in a previous paper [11] how to extract a minimal
representation for a tiling automatically from an image of it. To
extract a representation for a tiling manually from an image or
even a sketch of it, follow the recipe in §3. First fix a vertex to
be the origin and rotate the drawing around the origin so that
some edge becomes horizontal. Then locate two vertices nearest
to the origin that are equivalent to the origin by two linearly
independent translations.1 The seeds are the vertices inside the
parallelogram defined by the translation vectors. The lattice
coordinates for all elements are found by following paths along
the edges. This process automatically gives a minimal represen-
tation because the vertices defining the translation vectors are
the feasible ones closest to the origin.

1This can be done by printing two semi-transparent drawings of the tiling
and sliding one over the other until they match. This is the hard step for a human,
especially for large repetitive tilings.

12 preprint accepted for publication CAG 3282 / Computers & Graphics (2021)

Efficacy in the context of applications. Our representation is sim-
ple to understand, as explained in §3: it focuses on the vertices,
the simplest elements of the tiling, and gives them integer coor-
dinates that are easy to extract from paths along the edges. It is
simple to reconstruct a tiling from a representation, as explained
in §4. Complementing the compact external representation (an
integer matrix) with an explicit internal representation of its
vertices (the cloud) simplifies many algorithms. No complex
data structures and no nearest-neighbors searches are needed.
Moreover, most tasks have robust solutions based on error-free
integer arithmetic. They need no geometric tests and no arbitrary
tolerances that plague geometric algorithms.

8. Related work

Representation. Kaplan [3] gave a highly detailed symbolic
description of isohedral tilings, in which all tiles are transitively
equivalent. He developed edge shape parameterization and tiling
vertex parameterization for each type of isohedral tiling. He also
considered coloring rules over his representation. However, that
approach does not generalize in an obvious way for periodic
tilings having more than one type of tile.

Dress and Huson [23] and Delgado-Friedrichs [24] described
a general data structure for representing periodic tilings using
graph symbols and adjacency functions between “chambers”, a
triangulation of the original tiles. Huson [25] used these symbols
to enumerate tile-k-transitive tilings of the Euclidean plane, the
sphere, and the hyperbolic plane. Recently, Zeller et al. [26]
published Tegula, a program for displaying and exploring two-
dimensional periodic tilings. Their graph symbol and chamber
labeling give all the symmetries of the tiling. However, ren-
dering such symbols in large scale is costly, since the classifi-
cation of each point relies only on the neighboring chambers.
Our translation-only approach gives a much simpler and faster
method for drawing tilings with regular polygons inside arbitrar-
ily large regions of the plane.

Our approach is closer in spirit to that of Ostromoukhov [27],
who explained how to represent a plane ornamental pattern, such
as an Islamic pattern, by manually analyzing its structure. He
also showed how to render the pattern from its representation. A
key point in his approach is strand analysis, which describes how
the symmetries of the pattern behave in a fundamental region.
Our approach with seeds is similar but, as we argued in §6, is
much simpler, since it only requires translational symmetry.

Complex numbers have been used to represent aperiodic
tilings. Shutov and Maleev [28] refined the Baake construc-
tion of Penrose tilings using 5th roots of the unity. Pautze [29]
used 2nth roots of the unity to represent substitution aperiodic
tilings with dihedral symmetry.

Preliminary forms of our representation were described briefly
in the context of rendering and acquisition [10, 11]. Our previ-
ous reconstruction algorithm [10] relied on nearest-neighbors
searches and geometric computations with numerical tolerances,
which worked well for that task but may not work reliably for
more general applications. Our previous method for deciding the
equivalence of two representations [11] relied on the Hermite
normal form of integers matrices. In both cases, the algorithms

described here are much simpler and robust because they rely
solely on the cloud.

Catalogs. Efforts in producing catalogs of tilings by regular
polygons are recurrent in the literature. Our work was moti-
vated by the catalog by Sá and Sá [12]. In 2009, Lenngren [4]
reviewed the efforts in the enumeration of k-uniform tilings:
k = 1 by Kepler in 1619 and by Sommerville in 1905, k = 2
by Krötenheerdt in 1969, k = 3 in by Chavey in 1984, and
k = 4,5,6 by Galebach in 2002. Recent work on tilings by regu-
lar polygons includes Chavey on dodecagon dense tilings [30]
and Connelly–Dickinson on circle packings [15].

Galebach’s collection of tilings [19] remains the state of the
art in the classification of k-uniform tilings [31]. Unfortunately,
only low-resolution images of line drawings are available, but
no vertex coordinates or code. Wikipedia includes a smaller
catalog [32] of tilings represented as SVG, citing Chavey [33]
and Galebach [19] as sources. We have acquired [11] and pub-
lished [9] representations for all tilings in Galebach’s collection
and have confirmed their stated uniformity and Archimedean
character using the methodology described in §6.

Symmetry. Liu et al. [34] carefully reviewed the field of com-
putational symmetry, including the long history of symmetry
detection algorithms, dating back to 1932. Our algorithms for
detecting symmetries in tilings work on exact representations
instead of images and look for a small set of symmetries that
is known a priori. Thus, we are able to find exact symmetries
efficiently.

9. Conclusion

No complete classification exists for periodic tilings of the
plane by regular polygons. We described here a representation
for such tilings that is simple and supports robust algorithms.
Applications that deal with tilings by regular polygons can use
our representation and the data we have published. We hope that
our representation will encourage and enable the comparison
and classification of existing tilings and a systematic search
for new tilings. These are clear directions for long-term future
work. As a shorter-term goal, we propose the investigation of
normal forms for our representations of tilings, which would
turn deciding equivalence of two representations into a simple
comparison of their normal forms. Catalogs of tilings in our
representation would then be able to use standard entries for
each tiling.

Acknowledgements. J. E. Soto Sánchez was partially supported by a
CNPq doctoral scholarship [22]. L. H. de Figueiredo is partially sup-
ported by a CNPq research grant. This research was done in the Visgraf
Computer Graphics laboratory at IMPA, at FGV EMAp, and at the De-
partment of Computer Science, University College London. Visgraf is
supported by the funding agencies FINEP, CNPq, and FAPERJ, and also
by gifts from IBM Brasil, Microsoft, NVIDIA, and other companies.

preprint accepted for publication CAG 3282 / Computers & Graphics (2021) 13

References

[1] Grünbaum, B, Shephard, GC. Tilings and patterns. W. H. Freeman; 1989.
[2] Conway, JH, Burgiel, H, Goodman-Strauss, C. The symmetries of things.

AK Peters; 2008.
[3] Kaplan, CS. Introductory tiling theory for computer graphics. Synthesis

Lectures on Computer Graphics and Animation 2009;4(1):1–113.
[4] Lenngren, N. k-uniform tilings by regular polygons. Tech. Rep. U.U.D.M.

project report 2009:23; Uppsala University; 2009.
[5] Grünbaum, B, Shephard, GC. Tilings by regular polygons. Mathematics

Magazine 1977;50(5):227–247.
[6] Kaplan, CS. Islamic star patterns from polygons in contact. In: Proceed-

ings of the Graphics Interface 2005. 2005, p. 177–185.
[7] Nasri, A, Benslimane, R. Parametric shape grammar formalism for

Moorish geometric design analysis and generation. Journal on Computing
and Cultural Heritage 2017;10(4):1–20.

[8] Peng, CH, Pottmann, H, Wonka, P. Designing patterns using triangle-
quad hybrid meshes. ACM Transactions on Graphics 2018;37(4):107.

[9] Soto Sánchez, JE, Medeiros e Sá, A, de Figueiredo, LH. Periodic tilings
of regular polygons. 2020. URL: chequesoto.info/tilings.html.

[10] Medeiros e Sá, A, de Figueiredo, LH, Soto Sánchez, JE. Synthesizing
periodic tilings of regular polygons. In: Proceedings of SIBGRAPI 2018.
IEEE Computer Press; 2018, p. 17–24.

[11] Soto Sánchez, JE, Medeiros e Sá, A, de Figueiredo, LH. Acquiring
periodic tilings of regular polygons from images. The Visual Computer
2019;35(6):899–907.

[12] Sá, R, Medeiros e Sá, A. Sobre malhas arquimedianas. Olhares; 2017.
[13] Hilbert, D, Cohn-Vossen, S. Geometry and the imagination. Chelsea;

1952.
[14] Bremner, MR. Lattice basis reduction. CRC Press; 2012.
[15] Connelly, R, Dickinson, W. Periodic planar disc packings. Philosophical

Transactions of the Royal Society A 2014;372(2008):20120039.
[16] Botsch, M, Kobbelt, L, Pauly, M, Alliez, P, Levy, B. Polygon Mesh

Processing. AK Peters; 2010.
[17] Washburn, DK, Crowe, DW. Symmetries of culture: Theory and practice

of plane pattern analysis. University of Washington Press; 1988.
[18] Bonner, J. Islamic geometric patterns. Springer; 2017.
[19] Galebach, B. n-uniform tilings. 2002. URL: probabilitys-

ports.com/tilings.html.
[20] Schattschneider, D. The plane symmetry groups: their recognition and

notation. American Mathematical Monthly 1978;85(6):439–450.
[21] Requicha, AG. Representations for rigid solids: Theory, methods, and

systems. ACM Computing Surveys 1980;12(4):437–464.
[22] Soto Sánchez, JE. On periodic tilings with regular polygons. Ph.D. thesis;

IMPA; 2020. URL: chequesoto.info/thesis.html.
[23] Dress, AWM, Huson, D. On tilings of the plane. Geometriae Dedicata

1987;24(3):295–310.
[24] Delgado-Friedrichs, O. Data structures and algorithms for tilings I. Theo-

retical Computer Science 2003;303(2):431–445.
[25] Huson, DH. The generation and classification of tile-k-transitive tilings

of the euclidean plane, the sphere and the hyperbolic plane. Geometriae
Dedicata 1993;47(3):269–296.

[26] Zeller, R, Friedrichs, OD, Huson, DH. Tegula – exploring a galaxy of
two-dimensional periodic tilings. 2020. arXiv:2007.10625.

[27] Ostromoukhov, V. Mathematical tools for computer-generated ornamental
patterns. In: Electronic Publishing, Artistic Imaging, and Digital Typogra-
phy; vol. 1375 of Lecture Notes in Computer Science. Springer; 1998, p.
193–223.

[28] Shutov, AV, Maleev, AV. Penrose tilings as model sets. Crystallography
Reports 2015;60(6):797–804.

[29] Pautze, S. Cyclotomic aperiodic substitution tilings. Symmetry
2017;9(2):19.

[30] Chavey, D. Tilings by regular polygons iii: dodecagon-dense tilings.
Symmetry: Culture and Science 2014;25(3):193–210.

[31] The On-Line Encyclopedia of Integer Sequences, . A299780. 2018. URL:
oeis.org/A299780.

[32] Wikipedia, . Euclidean tilings by convex regular polygons. 2020. URL:
en.wikipedia.org/wiki/Euclidean tilings by convex regular polygons.

[33] Chavey, D. Tilings by regular polygons. II. A catalog of tilings. Computers
& Mathematics with Applications 1989;17:147–165.

[34] Liu, Y, Hel-Or, H, Kaplan, CS, Gool, LJV. Computational symmetry
in computer vision and computer graphics. Foundations and Trends in
Computer Graphics and Vision 2010;5(1-2):1–195.

http://chequesoto.info/tilings.html
http://probabilitysports.com/tilings.html
http://probabilitysports.com/tilings.html
http://chequesoto.info/thesis.html
http://arxiv.org/abs/2007.10625
http://oeis.org/A299780
http://en.wikipedia.org/wiki/Euclidean_tilings_by_convex_regular_polygons

	Introduction
	Background, motivation, and overview
	A representation for periodic tilings by regular polygons
	Topological primitives
	Geometric operations
	Symmetry
	Properties of the representation
	Related work
	Conclusion

