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Abstract
Controlled capture of real-world material appearance yields tabulated sets of highly realistic reflectance data. In practice,
however, its high memory footprint requires compressing into a representation that can be used efficiently in rendering while
remaining faithful to the original. Previous works in appearance encoding often prioritized one of these requirements at the
expense of the other, by either applying high-fidelity array compression strategies not suited for efficient queries during rendering,
or by fitting a compact analytic model that lacks expressiveness. We present a compact neural network-based representation of
BRDF data that combines high-accuracy reconstruction with efficient practical rendering via built-in interpolation of reflectance.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling, critical for the
accurate reconstruction of specular highlights. Additionally, we propose a novel approach to make our representation amenable
to importance sampling: rather than inverting the trained networks, we learn to encode them in a more compact embedding that
can be mapped to parameters of an analytic BRDF for which importance sampling is known. We evaluate encoding results on
isotropic and anisotropic BRDFs from multiple real-world datasets, and importance sampling performance for isotropic BRDFs
mapped to two different analytic models.

1. Introduction

Accurate reproduction of material appearance is a major challenge
in computer graphics. Currently, there are no standardized repre-
sentations for reflectance acquisition data, and there is no universal
analytic model capable of representing the full range of real-world
materials [GGG*16].

The development of new methods for appearance capture has
led to an increasing amount of densely sampled data from real-
world appearance [MPBM03, VF18, DJ18]. Although tabulated
representations of reflectance data are usually very accurate, they
suffer from a high memory footprint and computational cost at
evaluation time [HGC*20]. Reflectance data, however, exhibits
strong coherence [Don19], which can be leveraged for efficient
representation and evaluation of real-world materials. Existing
approaches perform dimensionality reduction using matrix factor-
ization [LRR04, NDM06, NJR15] which requires a large number
of components for high quality reproduction, or by fitting analytic
models [NDM05], usually relying on time-consuming and numer-
ically unstable non-linear optimization and presenting a limited
capacity to accurately reproduce real-world materials.

Recent works successfully applied deep learning methods on re-
flectance estimation [DAD*18], material synthesis [ZFWW18] and

BTF compression and interpolation [RJGW19, RGJW20]. Close to
our work, Hu et al.’s DeepBRDF [HGC*20] use a deep convolu-
tional autoencoder to generate compressed encodings of measured
BRDFs, which can be used for material estimation and editing; how-
ever, their encoding depends on a rigid sampling of the tabulated
data, independent of the shape of the encoded BRDF, and Deep-
BRDFs require back-transformation into tabulated form for evalua-
tion, making them less suitable for rendering than for editing of ap-
pearance.

In contrast, we aim for a representation that allows for efficient
rendering while retaining sufficient expressiveness for a wide range
of materials. The contributions of our work are as follows:

• A neural representation for measured BRDFs that
– retains high fidelity under a high compression rate;
– can be trained with an arbitrary sampling of the original BRDF,

allowing for BRDF-aware adaptive sampling of the specular
highlights during training which is critical for their accurate
reconstruction; additionally, our network

– can be used directly as replacement of a BRDF in a render-
ing pipeline, providing built-in evaluation and interpolation
of reflectance values, with speeds comparable to fast analytic
models. In Sections 4.1, 4.2 and 4.5 we compare our encoding
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with other representations in terms of quality of reconstruction,
speed and memory usage.

• Deployment of a learning-to-learn autoencoder architecture to
explore the subspace of real-world materials by learning a latent
representation of our Neural-BRDFs (NBRDFs). This enables
further compression of BRDF data to a 32-values encoding,
which can be smoothly interpolated to create new realistic
materials, as shown in Section 4.3.

• A learned mapping between our neural representation and an in-
vertible parametric approximation of the BRDF, enabling impor-
tance sampling of NBRDFs in a rendering pipeline; in Section 4.4
we compare our method with other sampling strategies.

2. Related Work

2.1. BRDF Compression and interpolation

Real-world captured material appearance is commonly represented
by densely sampled and high-dimensional tabulated BRDF mea-
surements. Usage and editing of these representations usually
requires strategies for dimensionality reduction, most commonly
through different variants of matrix factorization [LRR04, NDM06,
NJR15], which require large storage in order to provide accurate
reconstructions, or by fitting to an analytic model. BRDF models
are lightweight approximations specifically designed for compact
representation and efficient evaluation of reflectance data. However,
fitting these models usually relies on unstable optimizations, and
they are capable of representing a limited gamut of real-world
appearances [SKWW17].

Ngan et al. [NDM05] were the first to systematically study the
fitting of analytical BRDF models to real-world materials. Since
then, more complex models have been developed, many of them
based on the microfacet model originally proposed by Cook and
Torrance [CT82]. In particular, two parametrizations of the mi-
crofacet D distribution are considered the state-of-the-art in para-
metric reconstruction: the shifted gamma distribution (SGD) by
Bagher et al. [BSH12] and the ABC model by Low et al. [LKYU12].

More recent models have been developed with non-parametric
definitions of some or all component functions of the microfacet
model. Although these models are limited by their inherent
factorization assumptions, they present a very good trade-
off between memory storage and high-quality reconstruction.
Dupuy et al. [DHI*15] fit the D distribution from the retro-
reflective lobe using power iterations. Their fitting method avoids
the instabilities of non-linear optimization and allows the sub-
sequent translation to other microfacet-based models such as
GGX [WMLT07] and Cook-Torrance [CT82]. Bagher et al
[BSN16] define a non-parametric factor microfacet model (NPF),
state-of-the-art in non-parametric reconstruction of isotropic BRDF,
using tabulated definitions for the three functional components (D,
F and G) of the microfacet model, with a total memory footprint
of 3.2KB per material. Dupuy and Jakob [DJ18] define a new
adaptive parametrization that warps the 4D angle domain to match
the shape of the material. This allows them to create a compact
data-driven representation of isotropic and anisotropic reflectance.
Their reconstructions compare favourably against NPF, although at

the price of an increased storage requirement (48KB for isotropic
3-channels materials, 1632KB for anisotropic).

Close to our work, Hu et al. [HGC*20] use a convolutional
autoencoder to generate compressed embeddings of real-world
BRDFs, showcasing applications on material capture and editing.
In Section 3.1 we describe a method for BRDF compression based
on a neural representation of material appearance. In contrast with
Hu et al.’s, our neural BRDF network can be directly used as re-
placement of a BRDF in a rendering system, without the need to ex-
pand its encoding into a tabular representation. Moreover, NBRDF
provides built-in fast interpolated evaluation, matching the speed of
analytic models of much lower reconstruction quality. We compare
our method with other parametric and non-parametric representa-
tions in terms of reconstruction accuracy, compression and evalua-
tion speed.

Chen et al. [CNN20] implement iBRDF, a normalizing flow net-
work designed to encode reflectance data, focusing on generating a
differentiable inverse rendering pipeline for joint material and light-
ing estimation from a single picture with known geometry. Their ar-
chitecture, based on non-linear independent components estimation
(NICE) [DKB15], compares favourably against bi-variate tabulated
representations [RVZ08] of the MERL BRDF database [MPBM03]
(detailed in Section 3.4) in terms of reconstruction accuracy, with
similar storage requirements. Similarly to our architecture, the input
of iBRDF is given by the Rusinkiewicz parametrization [Rus98], al-
though it is reduced to three angles, thus limiting the representation
to isotropic materials.

In Section 3.2, we describe a learning-to-learn autoencoder
architecture that is able to further compress our NBRDF networks
into a low dimensional embedding. A similar architecture was
previously used by Maximov et al. [MLTFR19] to encode deep ap-
pearance maps, a representation of material appearance with baked
scene illumination. Soler et al. [SSN18] explored a low-dimensional
non-linear BRDF representation via a Gaussian process model, sup-
porting smooth transitions across BRDFs. Similarly, in Section 4.3
we show that the low dimensional embeddings generated by our
autoencoder can be interpolated to create new realistic materials.

2.2. Importance sampling of reflectance functions

BRDF-based importance sampling is a common strategy used to
reduce the variance of rendering algorithms relying on Monte
Carlo integration [CPF10]. For some analytic BRDF models, such
as Blinn-Phong [Bli77], Ward [War92], Lafortune [LFTG97] and
Ashikhmin-Shirley [AS00], it is possible to compute the inverse
cumulative distribution function analytically, thus providing a fast
method for importance sampling. For the general case, however,
closed-form inverse CDFs do not exist, requiring costly numeri-
cal calculation.

A practical alternative is to approximate the original BRDF by a
PDF with a closed-form inverse CDF, and to use them for impor-
tance sampling instead [LRR04]. While generally sacrificing speed
of convergence, this approach still leads to accurate, unbiased results
in the limit; however, it often introduces the requirement of a poten-
tially unreliable model fit via non-linear optimization. Accordingly,
in the context of measured data, many works forgo non-linear

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



334 A. Sztrajman et al. / Neural BRDF Representation fand Importance Sampling

models in favour of numerically more robust approxima-
tions, including matrix factorization [LRR04], as well as
wavelets [CJAMJ05] and spherical harmonics approxima-
tions [JCJ09]. Our work, too, operates with an approximating
PDF, but retains a physically-based invertible model and eliminates
the non-linear optimization by training a fast neural network to fit
the model parameters to measured BRDF data (see Section 3.3).

2.3. Neural sampling and denoising

While importance sampling’s main objective is faster convergence,
it has the secondary effect of reducing noise. Convolutional net-
works have successfully been applied for denoising of Monte Carlo
renderings [CKS*17, BVM*17] and radiance interpolation from
sparse samples [RWG*13, KMM*17]. However these methods do
not converge to ground truth, since they act directly on rendered
images, lacking information from the underlying scene.

Other recent works, too, leveraged neural networks for impor-
tance sampling in Monte Carlo integration. Bako et al. [BMDS19]
trained a deep convolutional neural network for guiding path
tracing with as little as 1 sample per pixel. Instead of costly
online learning, their offline deep importance sampler (ODIS) is
trained previously with a dataset of scenes and can be incorpo-
rated into rendering pipelines without the need for re-training.
Lindell et al. [LMW21] developed AutoInt, a procedure for fast
evaluation of integrals based on a neural architecture trained to
match function gradients. The network is reassembled to obtain
the antiderivative, which they use to accelerate the computation of
volume rendering. Zheng et al. [ZZ19] trained an invertible real-
valued non-volume preserving network (RealNVP) [DSDB17] to
generate a scene-dependent importance sampler in primary sample
space. Concurrently, Müller et al. [MMR*19] trained an invertible
neural network architecture based on non-linear independent
components estimation (NICE) [DKB15] for efficient generation of
samples. They explored two different settings: a global offline high-
dimensional sampling in primary sample space, and a local online
sampling in world-space, applied to both incident-radiance-based
and product-based importance sampling. An additional network
is used to learn approximately optimal selection probability and
further reduce variance.

3. Method and Implementation

Drawing upon the observations of Section 2, we propose a new
representation for measured BRDFs that maximizes fidelity to the
data while retaining practicality. The remainder describes our basic
reflectance encoding (Section 3.1), an auto-encoder framework
for efficient representation (Section 3.2), as well as an importance
sampling scheme to further speed-up rendering (Section 3.3).

3.1. BRDF encoding

Our representation for BRDF data uses a shallow fully-connected
network with ReLU activations and a final exponential layer, as
shown in Figure 1, which we will refer to as NBRDF (Neural-
BRDF). These NBRDFs work as a standard BRDF representation
for a single material: the network takes incoming and outgoing

Figure 1: Diagram of a Neural-BRDF (NBRDF).

light directions as input, and outputs the associated RGB reflectance
value. Interpolation is handled implicitly by the network, via the
continuous input space.

The parametrization of the network input strongly affects the
reconstruction quality as it favours the learning of different aspects
of the reflectance function. Rainer et al. [RJGW19] use a stere-
ographic projection of the light and view directions in euclidean
coordinates as network parameters. While this parametrization
lends itself well to the modeling of effects like anisotropy, inter-
shadowing and masking, which dominate the appearance of
sparsely sampled spatially-varying materials, it is not well-suited to
reconstruct specular highlights (as can be seen in Figure 2), which
are much more noticeable in densely sampled uniform materials. In
contrast, we use the Cartesian vectors h and d of the Rusinkiewicz
parametrization [Rus98] for directions, which are a much better
suited set of variables to encode specular lobes.

During training we compute the difference between predicted and
ground-truth BRDF data using a logarithmic loss applied to cosine
weighted reflectance values:

Loss = ∣
∣ log(1 + f true

r cos θi) − log(1 + f pred
r cos θi)

∣
∣ , (1)

Conveniently, the architecture allows for unstructured sampling
of the angular domain, allowing for a BRDF-aware adaptive
random sampling of the upper hemisphere, for a total of 8 × 105

samples. We draw random uniform samples of the Rusinkiewicz
parametrization angles, which emphasizes directions close to the
specular highlight. In Section 4.1 we show that this is critical for
accurate encoding of the specular highlights. The loss stabilises
after 5 epochs for the more diffuse materials in Matusik et al.’s
MERL database [MPBM03] (detailed in Section 3.4) while the
most mirror-like ones can take up-to 90 epochs (between 10
seconds and 3 minutes on GPU).

NBRDF networks can be used to encode both isotropic and
anisotropic materials. The latter introduce a further dependence on
the Ruinskiewicz angle φh, which must be learnt by the network.
Following our sampling strategy, during training we draw random
uniform samples from all four Rusinkiewicz angles, increasing the
total number of samples five-fold to compensate for the increased
complexity of the BRDF functional shape. In Section 4.2 we an-
alyze the reconstruction of anisotropic materials from the RGL
database [DJ18], which contains 51 isotropic and 11 anisotropic
measured materials.
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Figure 2: Top row: Ground truth. Bottom row: Reconstruction using Rainer et al.’s architecture [RJGW19], treating each BRDF as a spatially
uniform BTF.

Figure 3: NBRDF autoencoder. Input and output are NBRDF net-
works of shape 6 × 21 × 21 × 3, flattened to 1D vectors of 675
values.

3.2. NBRDF autoencoder

Figure 3 shows our architecture for an autoencoder that learns a la-
tent representation for NBRDFs. Input and output are the flattened
weights of an NBRDF, which are further compressed by the network
into short embeddings. In effect, the autoencoder learns to predict
the weights of an NBRDF neural network. We typically use NBRDF
encodings with two hidden layers 6 × 21 × 21 × 3 for a total of 675
parameters and encode them into embeddings of 32 values.

In addition to further compressing the NBRDF representations,
the autoencoder provides consistent encodings of the MERL
materials that can be interpolated to generate new materials, as
demonstrated in Section 4.3. Additionally, we show in Sections 3.3
and 4.4 that these consistent encodings can be used to predict
parameters that can be leveraged for importance sampling.

Figure 4: Scheme for computation of inverse CDF from an
NBRDF: we train a network to map fromlatent NBRDF embeddings
to importance sampling parameters of a chosen analytic BRDF
model.

Training of the autoencoder is performed using NBRDFs pre-
trained with materials from MERL, employing a 80%-20% split be-
tween training and testing materials. To compensate for the limited
availability of measured materials, we augment our data by applying
all permutations of RGB channels for each material in the training
set. The training loss used is image-based: our custom loss layer
uses the predicted 675 × 1 vector to construct an NBRDF network
of the original shape (6 × 21 × 21 × 3), and evaluates it to produce
small renderings (64 × 64) of a sphere illuminated by a non-frontal
directional light with θl = 45◦, previously reported to produce
more accurate results than headlight illumination on image-based
BRDF fittings [SKWW19]. A fixed tone mapping (simple gamma
curve with γ = 2.2 and low values bottom-clamped to 10−12) is
then applied to the sphere renderings, and the loss is computed as
point-by-point MSE. The loss computation involves a differential
implementation of the rendering pipeline for direct illumination and
subsequent tone mapping, in order to keep the computation back-
propagatable. Notably, applying a more traditional, non-image-
based loss that attempts to match the input NBRDF weights fails to
reconstruct the original appearances of the encoded materials.
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Figure 5: NBRDF reconstruction of measured materials from the RGL database [DJ18] (top 4) and from Nielsen et al. [NJR15] (bottom 2),
using environment map and directional illuminations.

3.3. Importance sampling

Importance sampling of BRDFs requires producing angular sam-
ples with a probability density function (PDF) approximately
proportional to the BRDF. This can be accomplished by computing
the inverse cumulative distribution function (inverse CDF) of the
PDF, which constitutes a mapping between a uniform distribution

and the target distribution. The computation of the inverse CDF of
a PDF usually requires costly numerical integrations; however, for
a set of parametric BRDF models, such as Blinn-Phong or GGX,
this can be done analytically.

Our proposed method for quick inverse CDF computation is
based on a shallow neural network, shown in Figure 4, that learns
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Figure 6: Reconstruction of MERL materials using different BRDF representations, including the average SSIM value for each image. For
both NBRDF columns we utilized a fixed network size of 675 weights (6 × 21 × 21 × 3).

Figure 7: Average SSIM over all MERL materials for different BRDF representations.

Table 1: Average image-based losses of representation methods from Figure 6 over all MERL materials.

MAE RMSE SSIM

NBRDF Adaptive Sampling 0.0028 ± 0.0034 0.0033 ± 0.0038 0.995 ± 0.008
NBRDF Uniform Sampling 0.0072 ± 0.0129 0.0078 ± 0.0134 0.984 ± 0.029
NPF [BSN16] 0.0056 ± 0.0046 0.0062 ± 0.0047 0.990 ± 0.008
Low et al. [LKYU12] (ABC) 0.0080 ± 0.0070 0.0088 ± 0.0075 0.986 ± 0.012
Bagher et al. [BSH12] (SGD) 0.0157 ± 0.0137 0.0169 ± 0.0145 0.974 ± 0.027
Dupuy et al. [DHI*15] 0.0174 ± 0.0143 0.0190 ± 0.0151 0.976 ± 0.021
GGX 0.0189 ± 0.0118 0.0206 ± 0.0126 0.969 ± 0.024
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Figure 8: Polar plots (log scale) comparing NPF [BSN16] and
our NBRDF fittings with ground truth lobes for fixed incident
inclination angles θi. Top: grease-covered-steel. Bottom:
black-oxidized-steel with a single fixed θi at 80◦.

Table 2: Average image-based reconstruction losses over all MERL mate-
rials for our NBRDF autoencoder and 32-dimensional PCA.

MAE RMSE SSIM

NBRDF AE 0.0178 ± 0.013 0.0194 ± 0.014 0.968 ± 0.031
PCA [NJR15] 0.0199 ± 0.008 0.0227 ± 0.009 0.982 ± 0.007

the mapping between the embeddings generated by the NBRDF
autoencoder and a set of model parameters from an invertible
analytic BRDF. In essence, the network learns to fit NBRDFs to an
analytic model, an operation that is commonly performed through
non-linear optimization, which is comparatively slow and prone to
get lodged in local minima.

We use Blinn-Phong as target model for our prediction. Although
it contains a total of seven model parameters, its associated PDF is
monochrome and can be defined by only two parameters, associated
with the roughness of the material and the relative weight between
specular and diffuse components. Hence, we train our network to
learn the mapping between the NBRDF’s 32-value embeddings
and the Blinn-Phong importance sampling parameters. Although
the predicted PDF is an approximation of the original NBRDF,
the resulting sampling is unbiased due to the exact correspondence
between the sampling PDF and its inverse CDF, as shown in
Section 4.4.

3.4. MERL Database

The MERL BRDF database [MPBM03] contains reflectance mea-
surements from 100 real-world materials, with a dense sampling of
directions given directly in terms of the spherical angles (θ , φ) of the
h and d vectors from the Rusinkiewicz parametrization [Rus98]:

θh: 90 samples from 0 to 90, with inverse square-root sampling
that emphasises low angles.

θd : 90 uniform samples from 0 to 90.
φd : 180 uniform samples from 0 to 180. Values from 180 to 360

are computed by applying Helmholtz reciprocity.

Isotropic BRDFs are invariant in φh, so the MERL database,
which was created using a measurement setup relying on isotropic
reflectance [MWL*99], omits φh. Counting all samples for the three
colour channels, each material in MERL is encoded in tabular for-
mat with 4.4 × 106 reflectance values (approx. 34 MB).

4. Results

In this section, we analyze our results on the reconstruction and
importance sampling of measured materials. Although we centre
most of our analysis on materials from the MERL database, we
show that our approach can be applied to any source of measured
BRDFs, as displayed in Figure 5. Reconstruction results for the
complete set from MERL [MPBM03] and RGL [DJ18] databases
can be found in the supplemental material. In addition, we have in-
cluded our implementation of the NBRDF training in Keras [C*15],
a Mitsuba plugin to render using our representation, and a dataset
of pre-trained NBRDFs for materials from the MERL [MPBM03],
RGL [DJ18] and Nielsen et al. [NJR15] databases.

4.1. BRDF reconstruction

Figure 6 shows reconstruction performance on a visually diverse set
of materials of the MERL database, for different approaches. We
qualitatively compare the methods through renderings of a scene
with environment map illumination. Ground truth is produced by
interpolating the tabulated MERL data. The comparison reveals that
most methods struggle with one particular type of materials: a GGX
fit tends to blur the highlights, Bagher et al. [BSH12] on the other
hand achieve accurate specular highlights, but the diffuse albedo
seems too low overall. Out of all the proposed representations, our
method produces the closest visual fits, followed by NPF [BSN16],
a non-parametric BRDF fitting algorithm recently cited as state-
of-the-art [DJ18]. As detailed in Section 2.1, a recent data-driven
BRDF model by Dupuy and Jakob [DJ18] also compared favourably
against NPF, although at an increased storage requirement.

A quantitative analysis of the results, seen in Figure 7 and
Table 1, shows that our representation outperforms the other
methods in multiple image-based error metrics. In particular,
NPF [BSN16] seems to lose fitting accuracy at very grazing angles,
which is where the error is the highest on average (see Figure 7).
A more detailed analysis of the functional shape of the NPF lobes
confirms this observation. In Figure 8 we display polar plots (in
log scale) of the specular lobes of two materials from MERL,
comparing NBRDF and NPF fittings with ground truth for fixed
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Figure 9: Neural BRDF reconstruction of anisotropic materials from the RGL database [DJ18].

incident angles. For low values of incident inclination θi there is
generally good agreement between all representations, while for
grazing angles only NBRDFs are able to match the original shape.
Furthermore, in the bottom plot we observe that NPF tends to pro-
duce unusually long tails. In the supplemental material we provide
polar plot comparisons for the the full set of MERL materials.

One of the key components in successfully training the NBRDF
networks is the angular sampling of the training loss. If training sam-
ples are concentrated near the specular lobe, the NBRDF will accu-
rately reproduce the highlights. On the other hand, if the samples are
regularly distributed, the Lambertian reflectance component will be
captured more efficiently. We hence employ a BRDF-aware adap-

tive sampling of angles during training that emphasizes samples
close to the reflectance lobes. In practice, we uniformly (randomly)
sample the spherical angles of the Rusinkiewicz parametrization (θh,
θd and φd), which results in a sample concentration around the spec-
ular direction, while retaining sufficient coverage of the full hemi-
sphere. Table 1 shows that this adaptive strategy for training sample
generation produces much better results over the whole database and
allows us to outperform analytic model fits in various error metrics.

Finally, in Figure 10 we display the SSIM error for all materials
from the MERL database, and for all discussed reconstruction
methods. Our NBRDF adaptive-sampling outperforms other meth-
ods for almost all materials, with the exception of a small number of
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Figure 10: SSIM error for all materials from the MERL database using the BRDF reconstruction methods from Figure 6.

highly specular materials. Please refer to the supplemental material
for a full detail of reconstructions, including all materials from the
MERL and RGL [DJ18] databases.

4.2. Reconstruction of anisotropic materials

In Figure 9 we display the NBRDF reconstructions of multiple
anisotropic materials from the RGL database [DJ18]. The networks
used are the same as shown in the isotropic results of Figure 6
(i.e. 6 × 21 × 21 × 3 for a total of 675 weights). The reconstruc-
tion of the anisotropy is surprisingly robust, especially taking into
account the compactness of the network size. There are, however,
more perceivable differences in the visual fits than in the NBRDF
isotropic encodings, which is reflected on the average SSIM error:
0.981 ± 0.016. Lower reconstruction errors can be achieved by in-
creasing the network size of the encoding NBRDF, providing great
control over the level-of-detail of the representation. In Section 4.5
we will analyze the dependence of the reconstruction error with
the network size, comparing with other representations in terms of
memory footprint.

4.3. Latent space of materials

The generation of a unified encoding of the space of materials opens
up many new possibilities. We use the NBRDF encodings of MERL
materials to train our autoencoder that compresses NBRDFs to a 32-
dimensional latent space.

In Table 2 we summarize various reconstruction error metrics
comparing our autoencoding with PCA factorisation across MERL.
Our implementation of PCA follows Nielsen et al.’s [NJR15], who
proposed various improvements over traditional PCA, most im-
portantly a log-mapping of reflectance values relative to a median
BRDF measured over the training set. The training of both meth-
ods was performed with the same 80%-20% split of materials from

Figure 11: t-SNE clustering of MERL latent embeddings produced
by the NBRDF autoencoder.Test set materials are indicated in red.

MERL. The full set of renderings and errors can be found in the
supplemental material.

It is worth noting that the further reduction of NBRDFs from
675 parameters to 32 does not necessarily result in an effective
compression of the representation in a practical use case, since
the memory footprint of the decoder is roughly equivalent to 105
NBRDFs. In addition, preserving the maximum reconstruction
quality requires storing the original NBRDF, since the autoencoder
reduction inevitably leads to a degradation of the appearance after
the decoding; however, this is not an issue as the main application
of the autoencoder lies in the material embedding. Figure 11
shows a t-SNE clustering of the latent embedding learned by the
autoencoder. The projection to the latent space behaves sensibly,
as materials with similar albedo or shininess cluster together. This
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Figure 12: New materials generated by latent interpolating of MERL BRDFs [MPBM03]. Materials on the sides correspond to reconstructed
original materials, while the materials in-between were created by uniform interpolation of the original embedding positions in the autoen-
coder’s latent space. Bottom: Irregular transition between two materials from the MERL database [MPBM03], generated by the direct inter-
polation of the 675 parameters of two NBRDF networks.

32-dimensional encoding is the basis for our subsequent importance
sampling parameter prediction.

The stability of the latent space is further demonstrated in
Figure 12, where we linearly interpolate, in latent space, between
encodings of MERL materials, and visualize the resulting decoded
materials. In contrast, the bottom row of Figure 12 shows the direct
interpolation of the 675 parameters from two individually-trained
NBRDF networks. Noticeably, this does not lead to a smooth tran-
sition of the specular properties of the two materials.

4.4. Importance sampling

We leverage the stable embedding of materials provided by the
autoencoder to predict importance sampling parameters. In prac-
tice, we train a network to predict the 2 Blinn-Phong distribution
parameters that are used in the importance sampling routine. We
train on a subset of materials from the MERL database, using fitted
Blinn-Phong parameters from Ngan et al. [NDM05] as labels for
supervised training. In Figure 13 we compare and analyze the effect
of different importance sampling methods, applied to multiple
materials from MERL unseen by our importance sampling predic-
tion network. Renderings are produced with 64 samples per pixel,
with the exception of the ground truth at 6400 spp. Each column is
associated with a different importance sampling method, with all re-
flectance values begin evaluated from the original tabulated MERL

data. We compare uniform sampling, Blinn-Phong distribution
importance sampling (with optimized parameters, and predicted
parameters from our network), and Dupuy et al.’s[DHI*15] rou-
tine. Even though a Blinn-Phong lobe is not expressive enough
to accurately describe and fit the captured data, the parameters
are sufficient to drive an efficient importance sampling of the
reflectance distribution. Depending on the material, the pre-
dicted Blinn-Phong parameters can even reveal themselves better
suited for importance sampling than the optimised Blinn-Phong
parameters.

In addition to this image-based comparison, in Figure 14 we plot
multiple error metrics as a function of samples per pixel, to compare
the respective sampling methods. Both Phong and GGX-driven
importance sampling converge quickly and keep a significant
lead on uniform sampling. As shown in the plots, our importance
sampling prediction can be tuned to GGX parameters (optimized
labels from Bieron and Peers [BP20]) as well as to Blinn-Phong
parameters, or any arbitrary distribution. For simplicity, we choose
the Blinn-Phong distribution: more advanced models will provide a
better reconstruction, but not necessarily provide a better sampling
routine. More complex models might fit the specular lobe more
precisely, but neglect other reflectance components of the data,
such as sheen in fabric datasets for instance.

In Figure 15 we show importance sampling results for a com-
plex scene. The majority of the original BRDFs in the scene
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Figure 13: Importance sampling of testset materials from the MERL database, using 64 samples per pixel. Left to right: Ground Truth (6400
spp), Uniform sampling, Phong sampling (Optimized), Phong sampling (Our). Bottom: RMS errors.
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Figure 14: Average errors (log scale) vs SPP for all 20 MERL testset materials using the Veach scene from Figure 13. Left to right: MAE,
RMSE, MAPE, PSNR.

Figure 15: Importance sampling of kitchen scene using 6400 and 64 samples per pixel respectively for GT and compared methods.Most
materials in the scene, shown in flat-colour in the central image, have been replaced by MERL testset materials.

Figure 16: Average errors (log scale) versus SPP (Top) and render time (Bottom) for MERL testset materials in the kitchen scene from
Figure 15. Left to right: MAE, RMSE, MAPE, PSNR.

have been replaced by materials from the MERL database, from
the test set of our importance sampling parameter prediction net-
work. We show crops from the renderings and compare our Phong-
based importance sampling performance with uniform sampling
and the method by Dupuy et al. [DHI*15]. Our method con-
sistently shows lower noise in the scene, as also reflected in
the numerical errors of Figure 16 which show a faster conver-
gence for our method in terms of samples-per-pixel and render
time.

4.5. Computational performance

We compare the performance of our combined pipeline (NBRDF
reconstruction, with Phong-based importance sampling), to other
compact representations that combine fast BRDF evaluation and
built-in importance sampling strategies. All evaluations were
performed with CPU implementations in Mitsuba, running on an
Intel Core i9-9900K CPU. Table 3 shows that an unoptimized
implementation of NBRDFs, combined with Phong importance
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Table 3: Rays traced per second in Mitsuba [Jak] and memory footprint,
for different material representations. The NBRDF numbers correspond to
the 675-weights network (6 × 21 × 21 × 3).

Rays/s (×106) Memory (KB)

Bagher et al. [BSH12] 10.64 0.13
RGL [DJ18] 10.66 48.0
NBRDF + PhongIS (Ours) 12.50 2.70
Cook-Torrance 13.59 0.03
Dupuy et al. [DHI*15] 14.05 2.16
Low et al. [LKYU12] 15.13 0.03
GGX 16.82 0.03
NPF [BSN16] – 3.20

Figure 17: Average SSIM versus Memory footprint (log scale) for
multiple representations of BRDFs, with standard deviations.For
NBRDFs the network size can be adjusted to select the reconstruc-
tion accuracy, thus we include data points for multiple sizes.

sampling, although slower than other representations, offers com-
parable rendering performance, even to simple analytic models
such as Cook-Torrance.

Finally, in Figure 17 we compare multiple BRDF representation
methods in terms of the average reconstruction SSIM error in the
MERL database, and the memory footprint of the encoding. We
show that the NBRDF network size can be adjusted to select the re-
construction accuracy. For very small networks ( 100 weights) the
NBRDF reconstruction is inaccurate, and thus parametric represen-
tations are to be preferred. However, for NBRDF networks of 300
weights the reconstruction accuracy is already better than the best
parametric encoding (Low et al. [LKYU12]) and equivalent to a
state-of-the-art non-parametric method (NPF [BSN16]).

5. Conclusions

We propose a compact, accurate neural representation to encode
real-world isotropic and anisotropic measured BRDFs. Combin-
ing the learning power of neural networks with a continuous
parametrization allows us to train a representation that implicitly

interpolates, and preserves fidelity to the original data at high com-
pression rates. A new network instance is trained for every new
material, but the training is fast and efficient as the networks are
very light-weight.

We also show that the models are sufficiently well behaved to
be further compressed by an autoencoder. The learned embed-
ding space of materials open doors to new applications such as
interpolating between materials, and learning to predict material-
related properties. Specifically, we show that the latent positions
can be mapped to importance sampling parameters of a given
distribution. The computational cost of network evaluation is not
significantly higher than equivalent analytic BRDFs, and the added
importance sampling routine allows us to get comparable rendering
convergence speed. Overall, our model provides a high-accuracy
real-world BRDF representation, at a rendering performance
comparable to analytic models.

In future work, our architecture could be applied to spatially-
varying materials, for instance to derive spatially-varying impor-
tance sampling parameters on-the-fly, for procedurally created
objects and materials. Similarly to the importance sampling param-
eter prediction, our meta-learning architecture can be used to learn
further mappings, enabling applications such as perceptual material
editing, and fast analytic model fitting.
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