Neural BRDF Representation and Importance Sampling

Alejandro Sztrajman Gilles Rainer Tobias Ritschel Tim Weyrich

University College London, UK

Prague, 6 July 2022

[•]UCL

Sztrajman, Rainer, Ritschel, Weyrich: Neural BRDF Representation and Importance Sampling

BRDF representations

Despite its limitations, the BRDF is the most widely used reflectance parameterisation.

Traditionally, two prevailing modelling paradigms:

- Analytic BRDFs
 - closed-form reflectance functions
- Data-driven BRDFs
 - measured
 - discrete reflectance values

 $f_r(\omega_i, \omega_o)$

Why data-driven representations?

Polar plot of a Phong BRDF for multiple fixed incident azimuth angles (15, 30, 45, 60, 75).

Polar plot of a real-world measured BRDF from the MERL dataset, for multiple fixed incident azimuth angles (15, 30, 45, 60, 75).

≜UC

Representing measured reflectance data

GT (Tabular)

- Accurate
- Large storage (~34 MB)
- Requires interpolation

Analytic Model (here: GGX)

- Requires costly and unstable optimisation
- Often inaccurate
- Very low storage (0.03 KB)
- Fast built-in interpolation

≜UC

Representation objectives

- Expressive enough for measured data
- Compactness (low storage)
- Practical for rendering
 - fast evaluation
 - no angular interpolation artefacts
 - no spatial interpolation artefacts (SVBRDFs)
 - suitable for importance sampling

Past representations for measured data

- Analytic model fits
 - [Marschner et al. 1999], [Ngan et al. 2005], [Bagher et al. 2012], [Löw et al. 2012], ...
- Data volume compression
 - PCA [Matusik et al. 2003]
 - matrix factorisation [Lawrence et al. 2004], [Ngan et al. 2006], [Nielsen et al. 2015]
- Non-parametric
 - [Bagher et al. 2016], [Dupuy & Jakob 2018]
- Neural
 - [Maximov et al. 2019], [Hu et al. 2020], [Rainer et al. 2019/2020]

Our neural BRDF representation

- Directly encodes a BRDF
 - maps hemispherical directions to reflectance
 - Rusinkiewicz parameterisation
 - exponential activation

- Training:
 - image-based loss (cosine-weighted)
 - sampled uniformly in Rusinkiewicz space (denser near highlights)
 - convergence in 10 secs to 3 mins

Neural BRDF

- Accurate
- Large storage (34 MB)
- Requires interpolation

- Requires costly and unstable optimisation
- Often inaccurate
- Very low storage (0.03 KB)
- Fast built-in interpolation

- Costly but stable training
- Accurate
- Very low storage (2.7 KB)
- Fast built-in interpolation

Average SSIM over all MERL materials:

- 0.75 - 0.50 - 0.25 - 0.00 - -0.25 - -0.25

Reconstruction error

Average image-based losses of BRDF representations for all MERL materials:

	MAE	RMSE	SSIM
NBRDF Adaptive Sampling	$\textbf{0.0028} \pm \textbf{0.0034}$	0.0033 ± 0.0038	$\textbf{0.995} \pm \textbf{0.008}$
NBRDF Uniform Sampling	0.0072 ± 0.0129	0.0078 ± 0.0134	0.984 ± 0.029
NPF [BSN16]	0.0056 ± 0.0046	0.0062 ± 0.0047	0.990 ± 0.008
Low et al. [LKYU12] (ABC)	0.0080 ± 0.0070	0.0088 ± 0.0075	0.986 ± 0.012
Bagher et al. [BSH12] (SGD)	0.0157 ± 0.0137	0.0169 ± 0.0145	0.974 ± 0.027
Dupuy <i>et al</i> . [DHI ⁺ 15]	0.0174 ± 0.0143	0.0190 ± 0.0151	0.976 ± 0.021
GGX	0.0189 ± 0.0118	0.0206 ± 0.0126	0.969 ± 0.024

Compression and speed

Reconstruction Error vs Representation Size

Average SSIM error vs Memory footprint (log scale) for multiple BRDF representations. NBRDFs (in blue) shown for multiple network sizes. *(675 is second from the right)*

High Compression and Fast Evaluation

	Rays/sec ($\times 10^6$)	Memory (KB)
Bagher et al. [BSH12]	10.64	0.13
RGL [DJ18]	10.66	48.0
NBRDF + PhongIS (Ours)	12.50	2.70
Cook-Torrance	13.59	0.03
Dupuy et al. [DHI ⁺ 15]	14.05	2.16
Low et al. [LKYU12]	15.13	0.03
GGX	16.82	0.03
NPF [BSN16]	_	3.20

Rays traced per second in Mitsuba renderer, and memory footprint, for different material representations.

Anisotropic materials

- Neural BRDF reconstruction of materials from the EPFL/RGL dataset [Dupuy and Jakob 2018]
 - additional DOF requires 5× sample count for training
 - slight increase in visual differences (average SSIM of 0.981 ± 0.016)

Representation objectives

Expressive enough for measured data

- (Scompactness (low storage)
 - Practical for rendering
 - fast evaluation
 - ☑ no angular interpolation artefacts
 - no spatial interpolation artefacts (SVBRDFs)
 - suitable for importance sampling

Hyper-network: NBRDF autoencoder

- Input and output are Neural BRDF network weights
- Latent representation are 32-value vectors
 - a more compact NBRDF parameterisation
 - ideally, suited for NBRDF interpolation
- Training
 - with NBRDFs of the MERL database
 - image-based loss in NBRDF output domain
 - evaluates GT and predicts output NBRDF's output
 - implemented as differentiable rendering loss

NBRDF embedding in latent space

- Evaluation by t-SNE clustering
 - of MERL materials encoded by hyper-network
 - test-set materials outlined in red
- Materials cluster according to common reflectance properties
 - suggests favourable outcome

NBRDF interpolation

Plausible interpolation between NBRDF embeddings

- enables creation of new materials
- desirable property for extension to Neural SVBRDFs

Representation objectives

Expressive enough *for measured data*

(Compactness (low storage)

- Practical for rendering
 - fast evaluation
 - ☑ no angular interpolation artefacts
 - ✓ no spatial interpolation artefacts (SVBRDFs)
 - suitable for importance sampling

- Indispensable for efficient path tracing
- Requires sampling from a PDF
 - via uniform sampling of its CDF^{-1} ...
 - ... which would not be readily available for measured data and/or an NBRDF :-(
- Key insight [Lawrence et al. 2004]
 - importance sampling converges even if the PDF differs from the BRDF
 - provides room to pick a PDF whose CDF^{-1} is known :-)

- General approach
 - choose any parametric BRDF model with known CDF⁻¹
 - fit that model to the NBRDF
 - choose its CDF⁻¹ for importance sampling
- How to do so efficiently?
- Neural implementation
 - network to predict analytic parameters from (embedded) NBRDF
 - only predicting parameters relevant for IS
 - we tested Phong and GGX
 - Phong performed best; CDF⁻¹ defined by two parameters

Importance sampling of a kitchen scene using 64 SPP. Most materials in the scene have been replaced by MERL materials within our test set.

Sztrajman, Rainer, Ritschel, Weyrich: Neural BRDF Representation and Importance Sampling

Average RMSE errors (log scale) vs SPP/render time.

Representation objectives

- **Expressive enough** *for measured data*
- Compactness (low storage)
- Practical for rendering
 - fast evaluation
 - ☑ no angular interpolation artefacts
 - ☑ no spatial interpolation artefacts (SVBRDFs)
 - suitable for importance sampling

- Neural representation for measured BRDF data (NBRDF)
 - isotropic + anisotropic
 - higher fidelity than other representations
 - storage- and compute-efficient
- Hyper-network autoencoder with a differentiable rendering loss
 - creates compact embedding of NBRDFs with good interpolation properties
- Learnt mapping between embedded NBDRFs and an invertible analytic BRDF/CDF, enabling importance sampling
- Improves viability of measured BRDFs for practical applications

Subsequent / concurrent work

- "A compact representation of measured BRDFs using neural processes"
 [Zheng et al. 2022; concurrent]
 - autoencoder representation for BRDFs
 - (lower) 7-dimensional representation,
 but much larger decoder
- "Neural layered BRDFs" [Fan et al. 2022]
 - also directly trains a latent space of BRDFs that share one decoder

Supplemental material

See <u>https://reality.cs.ucl.ac.uk/projects/reflectance-</u> <u>remapping/sztrajman2021neural.html</u> for...

- reconstruction results for both MERL and EPFL/RGL databases
- our NBRDF training implementation (Keras)
- a Mitsuba plugin to render NBRDFs
- a dataset of pretrained NBRDFs for materials from the MERL, EPFL/RGL and Nielsen et al. databases
- an interactive WebGL demo

Neural BRDF Representation and Importance Sampling

Alejandro Sztrajman Gilles Rainer Tobias Ritschel Tim Weyrich

University College London, UK

Prague, 6 July 2022

[•]UCL