
International Journal of Computer Vision
https://doi.org/10.1007/s11263-019-01223-y

Learning on the Edge: Investigating Boundary Filters in CNNs

Carlo Innamorati1 · Tobias Ritschel1 · Tim Weyrich1 · Niloy J. Mitra1

Received: 19 January 2019 / Accepted: 27 August 2019
© The Author(s) 2019

Abstract
Convolutional neural networks (CNNs) handle the case where filters extend beyond the image boundary using several heuris-
tics, such as zero, repeat or mean padding. These schemes are applied in an ad-hoc fashion and, being weakly related
to the image content and oblivious of the target task, result in low output quality at the boundary. In this paper, we propose
a simple and effective improvement that learns the boundary handling itself. At training-time, the network is provided with
a separate set of explicit boundary filters. At testing-time, we use these filters which have learned to extrapolate fea-
tures at the boundary in an optimal way for the specific task. Our extensive evaluation, over a wide range of architectural
changes (variations of layers, feature channels, or both), shows how the explicit filters result in improved boundary
handling. Furthermore, we investigate the efficacy of variations of such boundary filters with respect to convergence speed
and accuracy. Finally, we demonstrate an improvement of 5–20% across the board of typical CNN applications (colorization,
de-Bayering, optical flow, disparity estimation, and super-resolution). Supplementary material and code can be downloaded
from the project page: http://geometry.cs.ucl.ac.uk/projects/2019/bounce-neural-resim/http://geometry.cs.ucl.ac.uk/projects/
2019/investigating-edge/.

Keywords Deep learning · Convolutional neural networks · Boundary rules · Boundary conditions

1 Introduction

When performing convolutions on a finite domain, boundary
rules are required as the kernel’s support extends beyond
the edge. For convolutional neural networks (CNNs), many
discrete filter kernels “slide” over a 2D image and typically
boundary rules including zero, reflect, mean, clamp
are used to extrapolate values outside the image.

Considering a simple detection filter (Fig. 1a) applied
to a diagonal feature (Fig. 1b), we see that no boundary
rule is ever ideal: zero will create a black boundary halo
(Fig. 1c), using the mean color will reduce but not remove
the issue (Fig. 1d), reflect and clamp (Fig. 1e, f) will
create different kinks in a diagonal edge where the ground-
truth continuation would be straight. In Fig. 1 we visualize
this as the error between the ideal response and the response
we would observe at a location if a feature was present. In
practical feature channels, these will manifest as false pos-

Communicated by Ling Shao, Hubert P. H. Shum, TimothyHospedales.

B Carlo Innamorati
c.innamorati@cs.ucl.ac.uk

1 University College London, London, UK

itive and negative images. These deteriorate overall feature
quality, not only on the boundary but also inside. Another,
equally unsatisfying, solution is to execute the CNN only on
a “valid” interior part of the input image (crop), or to execute
it multiple times and merge the outcome slide. Working in
lower ormultiple resolutions, the problem is even stronger, as
low-resolution images have a higher percentage of boundary
pixels. In a typical modern encoder–decoder (Ronneberger
et al. 2015), all will eventually become boundary pixels at
some step.

Having a second thought on what a 2D image actually is,
we see, that the ideal boundary rule would be the one that
extends the content exactly to the values an image taken with
a larger sensor would have contained. Such a rule appears
elusively hard to come by as it relies on information not
observed. We cannot decide with certainty from observing
the yellow part inside the image in Fig. 1b how the part
outside the image continues—what if the yellow structure
really stopped?—and therefore it is unknown what the filter
response should be. However, neural networks have the abil-
ity to extrapolate information from a context, for example
in inpainting tasks (Ren et al. 2015). Here, this context is
the image part inside the boundary. Given this observation,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-019-01223-y&domain=pdf
http://orcid.org/0000-0002-8431-4335
http://geometry.cs.ucl.ac.uk/projects/2019/bounce-neural-resim/
http://geometry.cs.ucl.ac.uk/projects/2019/investigating-edge/
http://geometry.cs.ucl.ac.uk/projects/2019/investigating-edge/


International Journal of Computer Vision

Filter

World

Image Error

(a) (b) (c) (d) (e) (f)

World

Image Error

World

Image Error

World

Image Error

World

Image Error

na
tu

ra
l

ze
ro

me
an

re
fl

ec
t

cl
am

p

Fig. 1 Applying a feature detection-like filter (a) to an image with different boundary rules (b)–(f). We show the error as the ratio of the ideal and
the observed response. A bright value means a low error due to a ratio of 1 i. e., the response is similar to the ideal condition. Darker values indicate
a deterioration

not every extension is equally likely. Most human observers
would follow the Gestalt assumption of continuity and pre-
dict the yellow bar to continue at constant slope outside the
image.

Addressing the boundary challenge, and making use of a
CNN’s extrapolating power, we propose the use of a novel
explicit boundary rule in CNNs. As such rules will have
to depend on the image content and the spatial location of
that content, we advocate to model them as a set of learned
boundary filters that simply replace the non-boundary filters
when executed on the boundary. Every boundary configu-
ration (upper edge, lower left corner, etc.) has a different
filter. This implies, that they incur no time or space overhead
at runtime. At training-time, boundary and non-boundary
filters are jointly optimized and no additional steps are
required. Additionally, in this extended version of the orig-
inal work (Innamorati et al. 2018), we study the efficiency
and performance of different variants of boundary-filters and
report quantitative results and convergence rate, averaged
over multiple runs. It seems, that introducing more degrees
of freedom increases the optimization challenge. However,
introducing the right degrees of freedom, can actually turn
an unsolvable problem into separate tasks that have simple
independent solutions, as we conclude from a reduction of
error both at the interior and at the edges, when using our
method.

After reviewing previous work and introducing our for-
malism, we demonstrate how using explicit boundary
conditions can improve the quality across a wide range of
possible architectures (Sect. 4). We next show improvement
in performance for tasks such as de-noising and de-bayering
(Gharbi et al. 2016), colorization (Zhang et al. 2016) as well
as disparity, scene flow (Dosovitskiy et al. 2015) and super-
resolution (Dong et al. 2016), in Sect. 5. Finally, in Sect. 6, we
investigate the benefits of different implementation strategies
of explicit boundary conditions.

2 PreviousWork

Our work extends deep convolutional neural networks
(Goodfellow et al. 2016) (CNNs). To our knowledge, the

immediate effect of boundary handling has not been looked
into explicitly. CNNs owe a part of their effectiveness to
weight-sharing or -invariance property: only a single con-
volution needs to be optimized that is applied to the entire
image (Fukushima and Miyake 1982). Doing so, inevitably,
the filter kernel will touch upon the image boundary at some
point. Classic CNNs use zero padding (Ciregan et al. 2012),
i. e., they enlarge the image by the filter kernel size they use,
or directly crop, i. e., run only on a subset (Krizhevsky et al.
2012) and discard the boundary. Another simple solution is
to perform filtering with an arbitrary boundary handling and
crop the part of the image that remains unaffected: if the fil-
ter is centered and 3 pixels wide, a 100 × 100 pixel image
is cropped to 98 × 98 pixels. This works in a single resolu-
tion, but multiple layers, in particular at multiple resolutions,
grow the region affected by the boundary linearly or even
exponentially. For example, the seminal U-net (Ronneberger
et al. 2015) employs a complicated sliding scheme to pro-
duce central patches from a context that is affected by the
boundary, effectively computing a large fraction of values
that are never used. We show how exactly such a U-net-like
architecture can be combined with explicit boundaries
to realize a better efficacy with lower implementation and
runtime overhead. Other work has extended the notion of
invariance to flips (Cohen and Welling 2016) and rotations
(Worrall et al. 2017). Our extension could be seen as attempt-
ing to add invariance under boundary conditions. For some
tasks like inpainting, however, invariance is not desired, and
translation-variant convolutions are used (Ren et al. 2015).
This paper shares the idea to use different convolutions in
different spatial locations. Uhrig et al. (2017) have weighted
convolutions to skip pixels undefined at test time. In our set-
ting, the undefined pixels are known at train time to always
fall on the boundary. By making this explicit to the learning,
it can capitalize on knowing how the image extends.

3 Explicit Boundary Rules

In this section we will define convolutions that can account
for explicit boundary rules, before discussing the loss
and implementation options.

123



International Journal of Computer Vision

Interior

=
Edge

Corner

g2g1

f (out)

g3 g5g4 g6 g8g7 g9

+ + + + + + + +

g2g1 g3 g5g4 g6 g8g7 g9

Fig. 2 Example domain decomposition for a 5×5 input image and 3×3
filters. Edges and corners of the input are highlighted and color coded.
Kernels g2,...n are color coded to match the portion of the input that they

will read from. White areas denote entries outside of the input domain.
As shown, each kernel is centered in the corresponding location of the
input that it is responsible for (Color figure online)

Convolution Key to explicit boundary handling is a
domain decomposition. Intuitively, in our approach, instead
of running the same filter for every pixel, different filters are
run at the boundary. This is done independently for every
convolution kernel in the network. For simplicity, we will
here explain the idea for a single kernel that computes a sin-
gle feature. The extension to many kernels and features is
straightforward. Again, for simplicity, we describe the pro-
cedure for a 2D convolution, mapping scalar input to scalar
output. The 3D convolution, mapping higher-dimensional
input to scalar output is derived similarly.

A common zero boundary handling convolution ∗0 of
an input image f (in) with the kernel g is defined as

f (out)[x] ∗0 g =
∑

y∈K

{
f (in)[x + y] · g[y] if x + y ∈ D
0 otherwise,

(1)

where K is the kernel domain, such as {−1, 0, 1}2 and D
is the image domain in pixel coordinates from zero to image
width and height, respectively.We extend this to explicit
boundary handling ∗e using a family of kernels g1,...n as

f (out)[x] ∗e g1,...,n =
∑

y∈K

{
f (in)[x + y] · gs[x][y] if x + y ∈ D
0 otherwise,

(2)

where s[x] is a selection function that returns the index
from 1 to n of the filter to be used at position x (Fig. 2). The
number of filters n depends on the size of the receptive field:
For a 3 × 3 filter it is 9 cases, for larger fields it is more.

LossThe loss is defined onmultiple filter kernel values g1,...n
instead of a single kernel. As this construction comprises of
linear operations only (the selection function can be writ-
ten as nine multiplications of nine convolution results with

nine masks that are 0 or 1 and a final addition), it is back-
propagatable.

ImplementationAfew things areworth noting for the imple-
mentation. First, applying multiple kernels in this fashion
has the same complexity as applying a single kernel. Con-
volution in the Fourier domain, where costs would differ, is
typically not done for kernels of this size. Second, the mem-
ory requirement is the same as when running with common
boundary conditions. All kernels jointly output one single
feature image. The boundary filters are never run in the inte-
rior part of the input and no result is stored for it. The only
overhead is in storing the filter masks. In practice however,
implementation constants might differ between implementa-
tions, in particular for parallel machines (GPUs).

The first practical option for implementation is the most
compatible one that just performs all nine convolutions on the
entire image and later composes the nine images into a single
image. This indeed has compute and memory cost linear in
the number of filters, i. e., nine times more expensive, both
for training and deployment.

To avoid the overhead, without having to access the low
level code of the framework in use, the additional kernels can
be trained on the specific sub-parts of the input that they act
on and then composited back to form the output.

4 Analysis

We will now analyze the effect of border handling for a
simplified task and different networks: learning how to per-
form a Gaussian blur of a fixed size. This task is suitable for
our experiments as it provides a rotational invariant filtering,
in a setting where exactly this is violated when going over
the boundary. Despite the apparent simplicity, we will see,
how many different variants of a state-of-the-art U-net-like
(Ronneberger et al. 2015) architecture all suffer from similar

123



International Journal of Computer Vision

boundary handling problems. This indicates, that the deteri-
orating effect of unsuccessful boundary handling cannot be
overcome by adapting the network structure, but needs the
fundamentally different domain decomposition we suggest.

4.1 Methods

Task The tasks is to learn the effect of a Gaussian filter of
size 13× 13 to 128× 128 images, obtained from the dataset
used for the ILSVRC (Russakovsky et al. 2015) competi-
tion, comprising of over one million images selected from
ImageNet (Deng et al. 2009). The ground truths were com-
puted over (128+12)× (128+12) images, which were then
cropped to 128 × 128.

Metrics We compare to the reference by means of the MSE
metric, which was also used as the loss function. The models
were selected by comparing the loss values over validation
set, while the reported loss values were separately computed
over a test set comprising of 10k examples.

ArchitectureWe use a family of architectures to cover both
breadth and width of the network. The breadth is controlled
by the number of feature channels and the depth by the num-
ber of layers. More specifically, the architecture comprises
of nl layers. Each layer performs a convolution to produce
nf feature channels, followed by a ReLU non-linearity. We

choose such an architecture, to show that the effect of bound-
ary issues is not limited to a special setting but remains
fundamental.

Boundary Handling We include our explicit handling,
aswell as the classiczero strategy that assumes the image to
be 0 outside the domain and reflect padding, that reflects
the image coordinate around the edge or corner.

4.2 Experiments

Here, we study how different architecture parameters affect
boundary quality for each type of boundary handling.

Varying Depth When varying depth nl from a single up to
7 layers (Fig. 3a) we find, that our explicit boundary
handling performs best on all levels, followed by reflect
boundary handling and zero. The feature channel count is
held fixed at nf = 3.

VaryingFeatureCountWhenvarying feature channel count
nf , it can be seen that explicit leads the board, followed
by reflect and zero (Fig. 3b). The depth is held fixed at
nd = 2.

Varying Feature Count and Depth When varying both
depth nl and feature channel count nf , seen in Fig. 3, c we
find, that again no architectural choice can compensate for

Er
ro

r

Feature count
1 2 4 6

Depth Depth + Feature count

1

0
3 5 7

zero reflect explicit

Re
su

lt
Er

ro
r

Re
fe

re
nc

e1

0

1

0

Er
ro

r

Er
ro

r

1 2 4 63 5 7 1/3 2/6 4/12 6/183/9 5/15 7/21

(a) (b) (c)

explicit
reflect
zero

zero reflect explicit zero reflect explicit

In
pu

t

Fig. 3 Analysis of different architectural choices using different bound-
ary handling (colors). First, a we increase feature channel count (first
plot and columns of insets). The vertical axis shows log error for the
MSE (our loss) and the horizontal axis different operational points. Sec-
ond b, depth of the network is increased (second plot and first 4 columns

of insets). Third, c both are increased jointly. The second row of insets
shows the best (most similar to a reference) result for each boundary
method (column) across the variation of one architectural parameter for
a random image patch (input an reference result seen in corner) (Color
figure online)

123



International Journal of Computer Vision

Table 1 Quantitative results

Task Src Absolute error Error ratio

Other metric MSE ratio

Unit refl zero Ours refl (%) zero (%) Ours (%)

Gaussian filtering DSSIM .0018 .0022 .0016 79 83 100

De-noise/Bayer Gharbi et al. (2016) PSNR 31.46 31.50 31.94 90 89 100

Colorization Zhang et al. (2016) DSSIM .1593 .1604 .1577 99 98 100

Disparity Dosovitskiy et al. (2015) px 1.538 1.511 1.403 84 88 100

Scene flow Dosovitskiy et al. (2015) px 1.380 1.183 1.096 56 73 100

Super-resolution Dong et al. (2016) DSSIM 7.3e–4 8.8e–4 5.3e–4 78 86 100

Different rows are different tasks. Different columns express different measures and different methods. Absolute error is measured using different
metrics (eventually not identical to the loss), while the Error ratio is expressed as the ratio of the loss of our method over the opposing boundary
rules. Best is bold. The architecture used for these tests is described in Sect. 4

the boundary effects. Each of the seven steps increase feature
count by 3 and depth by 1.

Statistical AnalysisA two-sided t test (N = 10,000) rejects
the hypothesis that our method is the same as any other
method for any task with p < .001.

5 Applications

Now, we compare different boundary handling methods in
several typical applications.

5.1 Methods

ArchitectureWe use an encoder–decoder network with skip
connections (Ronneberger et al. 2015) optimized for theMSE
loss using the ADAM optimizer.

Details are shown in our supplemental materials. The
architecture is different from the simplified one in the previ-
ous section where it was important to systematically explore
many possible variants. The encoding proceeds in 3 × 3
convolution steps 1 to 7, increasing the number of feature
channels from 1 to 256. There is a flat 1 × 1 convolution at
themost abstract representation at stage 8.Decoding happens
on stages 9 to 14. This step resizes the image, convolves with
stride 1 and outputs the stated number of features, followed
by a concatenate convolution by the stated skip ID and finally
a convolution with stride 1 that outputs the stated number of
features (ResConv).

Note, that boundary handling is required at all stages
except 8. For the down-branch 1–7 it can be less relevant
as strides do not produce all edge cases we handle. This is
because, with an even resolution scheme and a stride of 2,
the last row and column are skipped. Consequentially, three
of the four corners and two of the four edges are skipped,
too.

Measure We apply different task-specific measures: Gaus-
sian filtering and Colorization produce images for human
observers and consequently are quantified usingDSSIM.De-
Bayering, as a de-noising task, is measured using the PSNR
metric while disparity and scene flow are image correspon-
dence problems with results in pixel units.

Additionally, we propose to measure the success as the
loss ratio between the test loss of our architecture with and
the test loss of an architecture without explicit boundary han-
dling, using the MSE metric. We suggest to use the ratio as
it abstracts away from the unit and the absolute loss value
that depends on the task, allowing to compare effectiveness
across tasks (Table 1).

5.2 Results

Gaussian Blur Gaussian filtering is a simple baseline task
with little relevance to any practical application as we know
the solution (Sect. 4). It is relevant to our exposition, as we
know that, if the network had seen the entire world (and
not just the image content) it would be able to solve the
task. It is remarkable, that despite the apparent simplicity
of the task—it is a single linear filter after all—the absolute
loss is significant enough to be visible for classic boundary
handling. It is even more surprising, that the inability to learn
a simple Gaussian filter does not only result in artifacts along
the boundaries, but also in the interior. This is to be attributed
to the inability of a linear filter to handle the boundary. In
other words, it is surprisingly complex for a network without
explicit boundary handling to learn a task as easy as blurring
an image. We will see that this observation can also be made
for more complex tasks in the following sections.

De-noising and De-bayering In this application we learn a
mapping from noisy images with a Bayer pattern to clean
images using the training data of Gharbi et al. (2016). The
measure is the PSNR, peak signal-to-noise ratio (more is
better). We achieve the best PSNR at 31.94, while the only

123



International Journal of Computer Vision

change is the boundary handling. In relative terms, traditional
boundary handling can achieve only up to 90% of MSE.

Colorization Here we learn the mapping from grey images
to color images using data from Zhang et al. (2016). The
metric again is DSSIM. We again perform slightly better in
both absolute and relative terms.

Disparity and Scene Flow Here we learn the mapping from
RGB images to disparity and scene flow using the data from
Dosovitskiy et al. (2015). We measure error in pixel dis-
tances (less is better). Again, adding our boundary handling
improves both absolute and relative error. In particular, the
error of reflect and zero is much higher for scene flow.

Super-Resolution In this application, we learn a mapping
from low to high resolution images. In order to keep the
same architecture and maintain consistency, images of equal
size had to be used. For this reason, low resolution images
are mapped to high resolution sub-patches of the original
image using a 1:4 ratio. This definition of the problem allows
us to keep both the input and output size consistent with
the other tasks, while still performing the super resolution
task, albeit only on a sub-portion of the input image. Super-
resolution (Dong et al. 2016) is a classic Deep Learning task
that has been gaining traction in recent years. We used the
DSSIM metric to measure our success, with the explicit
strategy over-performing both in relative and absolute error.

5.3 Discussion

Wenowwill discuss thebenefit and challenges of explicit
boundary handling.

Overhead Here we study four implementation alternatives
for Sect. 3. They were implemented as a combination of
OpenGL geometry and fragment shaders. The test was ran
on aNvidia Geforce 480, on a 3mega-pixel image and a 3×3
receptive field.

The first method uses a simple zero-padding provided
by OpenGL’s sampler2D, invoking the GS once to cover
the entire domain and applying the same convolution every-
where. This requires 2.5 ms. This is an upper bound for any
convolution code.

The second implementation executes nine different con-
volutions, requiring 22.5ms. This invokes the GS nine times,
each invoking all pixels.

The third variant invokes the GS once and a conditional
statement for all pixels selects the kernel weights per-pixel
in the domain. This requires 11.2ms.

The fourth variant, a domain decomposition, invokes the
GS nine times to draw nine quads that cover the respective
interior and all boundary cases as seen in Fig. 2. Even after
averaging a high number of samples, we could not find evi-
dence for this to be slower than the baseline method i. e.,

Epoch

Lo
ss

explicit
reflect
zero

0 100
.0001

.1

.01

.001

Fig. 4 Convergence rate with different types of boundary

2.5ms. This is not unexpected, as the running time for a few
boundary pixels is below the variance of the millions of inte-
rior pixels.

In practice, the learning is limited by other factors such as
disk-IO.Our current implementation inKeras (Chollet 2015),
offers a simple form of domain decomposition.We tested the
performance loss over epochs with an average duration of 64
seconds. Our method results in a 0.2% average performance
loss over the classic zero rule.

Scalability in Receptive Field Size For small filters, the
number of cases is small, but grows for larger filters. For-
tunately, the trend is to rather cascade many small filters in
deeper network, instead of shallower networks with large
filters.

Convergence Convergence of both our approach and tradi-
tional zero boundary handling is seen in Fig. 4. We find,
that our method is not only resulting in a smaller loss, but
also does so at the same number of epochs. Before we have
established that the duration of epoch are the same for both
methods. We conclude there is no relevant training overhead
for our method.

Structure Here we seek to understand where spatially in
the image the differences are strongest. While our approach
changes the processing on edges, does it also affect the
interior? We compute the per-pixel MAE and average this
over all images in the corpus. The resulting error images
are seen in Fig. 5. We found the new method to consis-
tently improve results in the interior regions. It looks as if
the new boundary rules effectively “shield” the inner regions
from spurious boundary influences. The results at the bound-
aries are very competitive too, often better than zero and
reflect boundary handling. Note, that it is not expected
for any method, also not ours, to have a zero error at the
boundary: this would imply we were able to perfectly pre-
dict unobserved data outside of the image.

Practical AlternativesThere are simpler alternatives to han-
dle boundaries in an image of np pixels. We will consider a

123



International Journal of Computer Vision

explicitreflect
D

is
pa

rit
y

D
e-

ba
ye

rin
g

Co
lo

riz
at

io
n

zero
G

au
ss

Error histogram

A

B

C
A A

C C

CCC

C C C

B B

BBB
A A A

B B B

Su
pe

r-
re

sl
ut

io
n

C C C

C C C

BBB
A A A

Fig. 5 Mean errors across the corpus visualized as height fields for dif-
ferent tasks and different methods. Each row corresponds to one task
each column to one way of handling the boundary. Arrow A marks the
edge that differs (ours has no bump on the edge). Arrow B mark the

interior that differs (ours is flat and blue, others is non-zero, indicting
we improve also inside). Arrow C shows corners, that are consistently
lower for us

1D domain as an example here. The first is to crop nc pix-
els on each side and compute only np − 2nc output pixels.
The cropping nc is to be made sufficiently large, such that no
result is affected by a boundary pixel and nc depends on the
network structure. In a single-resolution network of depth nd
with a receptive field size of 2nr+1,we see, that nc = nd×nr.
In a multi-resolution network however, the growth is expo-
nential, so nc = nndr , and for a typical encoder–decoder that
proceeds to a resolution of 1×1, every pixel is affected. This
leaves two options: either the minimal resolution is capped
and the CNN is applied in a sliding window fashion (Ron-

neberger et al. 2015), computing always only the unaffected
result part, incurring a large waste of resources, or the net-
work simply has to use its own resources to make do with
the inconsistent input it receives.

6 Refined Boundary Filters

Our results indicate that learning additional filters can reduce
the error that classic convolutions introducewhen reading the
input at its boundaries. We also show our implementation to

123



International Journal of Computer Vision

Interior

=
Edge

Corner

g2g1

f (out)

g3 g5g4 g6 g8g7 g9

+ + + + + + + +

g2g1 g3 g5g4 g6 g8g7 g9

Fig. 6 Example domain decomposition for a 5 × 5 input image and
3 × 3 explicit-shift boundary filters. Edges and corners of the
input are highlighted and color coded. Kernels g2,...n are color coded to
match the portion of the input that they will read from. As opposed to
Fig. 2, where each kernel is centered in the corresponding location of

the input that it is responsible for, each filter is offset by one row and/or
column to avoid reading values that are outside of the input domain.
Consequently, during training, the filters will be required to learn to
shift back the information that they access (Color figure online)

have limited impact onperformance. In this section,we inves-
tigate the effect of different variations of boundaryfilters.Our
basic implementation of the boundary filters, referred to in
the paper as explicit boundary filters, is what was used
for the results in all previous sections of the paper. In addi-
tion, we now detail two alternatives: explicit-shift
boundary filters and explicit-randomized boundary
filters.

Explicit For explicit boundary filters, as shown in Fig. 2,
filters g2,...n are reading values outside of the input’s bound-
ary. Said values, for explicit filters, are filled with zeros.
In this mode, while the network can learn to treat the bound-
ary values of the input differently, it still has less information
to solve the task at the boundaries than elsewhere.
We now introduce a new strategy with the objective of min-
imizing the aforementioned limitations. For explicit-
shift boundary filters, we avoid any padding altogether
by only reading values from the input. This is achieved by
shifting the filter centers away from the boundary, allowing
the filters to read the same values, but additionally seeing
further data from the input, instead of (padded) zeros. Fig-
ure 6 re-codes filters g2,...n fromFig. 2 tomatch the behaviour
described here. Using the explicit-shift strategy, the
filters will have further information to solve the task at hand,
but will additionally have to learn about the shift.

Randomized As boundary filters see substantially less data
than interior filters at training time,we experimentedwhether
allowing the boundary and interior filters to see an equal
amount of data would benefit the training procedure. To this
end,we randomized, at training time, thefilter thatwould take
the interior part of the image. The implementation follows
the explicit-shift paradigm, meaning that the interior
patch being read is dependent on the randomly selected filter.
For example, if the left edge is selected as the filter for the

interior, the input patch will comprise the rightmost column,
but not the leftmost.

EvaluationWe evaluate the aforementioned implementation
choices both by comparing the quantitative results obtained
with the different filter strategies and by observing the loss
behaviour of each choice at training time. As the differences
between the methods is intuitively smaller when compared
to previous results, we opted to only test out tasks that could
be run on the ImageNet dataset, for statistical consistency.

Figure 7 displays the loss behaviour of the different
boundary filter implementations. The graphs were obtained
by averaging the trends over three differently seeded runs,
for each task. This was done to further decrease vari-
ance. Interestingly, while we notice an improvement for
the explicit-shift strategy for the De-Bayering and
Super-resolution tasks, this is not the case for Gaussian fil-
tering and Colorization. This suggests the improvement to
be possibly task-dependent. Comparing the plots in Fig. 5,
we notice how for both Gaussian filtering and Colorization
tasks, the bulk of the improvement did not reside at the cor-
ners and edges themselves, but rather in the mitigation of the
overall bias, which might explain why the different bound-
ary strategies appear the perform similarly.With regard to the
explicit-randomized strategy, the values at training
time are expected to be lower, as the boundary filters cannot
be as effective as the inner filters they randomly substitute.

Further, we quantitatively evaluate over a test set compris-
ing of 10k examples, similar to Sec. 5.1. Table 2 displays the
results of such analysis. The results confirm the expectations
from Fig. 7. Namely, that the explicit-shift paradigm
appears to be performing better, on average, than other
boundary filter strategies, in addition of not requiring any
padding. On the other hand, the explicit-randomized
boundaryfilter strategy cameout as theworst among the three
variants. We conclude that the advantages of further training

123



International Journal of Computer Vision

Fig. 7 Convergence rate for different tasks and boundary filter strate-
gies. The plots are constructed by averaging the trends over ten
differently seeded runs, for each task, in order to minimize the impact

of variance. Following the same reasoning, we only test on tasks that
can be trained using the ImageNet dataset. For each plot, we show error
bars to display the standard deviation across the runs

Table 2 Quantitative results

Task Unit Other metric MSE

expl. rand. shift expl. rand. shift

Gaussian filtering DSSIM .0016 .0016 .0016 .0007 .0007 .0006

De-noise/Bayer Gharbi et al. (2016) PSNR 31.94 31.42 32.13 .0014 .0016 .0011

Colorization Zhang et al. (2016) DSSIM .1577 .1581 .1579 0059 .0063 .0057

Super-resolution Dong et al. (2016) DSSIM 5.3e–4 5.1e–4 4.4e–4 2.1e–7 2.1e–7 1.8e–7

Different rows are different tasks. Columns express different measures and methods. The architecture used for these tests is described in Sect. 4

123



International Journal of Computer Vision

the boundary filters is not justified by comparing the addi-
tional training time against marginal improvements.

7 Conclusion

In traditional image processing, the choice of boundary rule
was never fully satisfying. In this work, we provide evidence,
that CNNs offer the inherent opportunity to jointly extract
features and handle the boundary as if the image continues
naturally. We do this by learning filters that are executed on
the boundary along with traditional filters executed inside
the image. We further investigate the benefit of boundary fil-
ters by introducing different implementation strategies for
the additional filters. We show that the explicit-shift
paradigm performs better, on average, than other bound-
ary filter strategies, while also lifting the need to pad its
input. Incurring little learning and no execution overhead, the
concept is simple to integrate into an existing architecture,
which we demonstrate by increased result fidelity for a typ-
ical encoder–decoder architecture on practical CNN tasks.
We therefore encourage testing our method for any CNN
application where the visual quality of the output carries rea-
sonable weight. Future work could investigate whether the
statistical bias of humans to favor framing certain objects and
patterns over others at the boundary, could affect the benefit
of boundary rules and how it could be leveraged. In a sim-
ilar direction, future research could analyze differences in
the learned weights of individual boundary filters and draw
conclusions from potential recurring patterns.

Acknowledgements We thank our reviewers for their helpful com-
ments. We also thank Paul Guerrero, Aron Monszpart and Tuanfeng
YangWang for their technical help in setting up and fixing themachines
used to carry out the experiments in this work. This work was partially
funded by the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Skłodowska-Curie Grant Agreement
No 642841, by the ERC Starting Grant SmartGeometry (StG-2013-
335373), and by the UK Engineering and Physical Sciences Research
Council (Grant EP/K023578/1).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Chollet, F., et al. (2015). Keras. Retrieved July, 2019, from https://keras.
io

Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep
neural networks for image classification. In CVPR (pp. 3642–49).

Cohen, T., &Welling, M. (2016). Group equivariant convolutional net-
works. In ICML (pp. 2990–2999).

Deng, J., Dong, W., Socher, R., Jia Li, L., Li, K., & Fei-fei, L. (2009).
Imagenet: A large-scale hierarchical image database. In CVPR.

Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image super-resolution
using deep convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(2), 295–307. https://doi.
org/10.1109/TPAMI.2015.2439281.

Dosovitskiy,A., Fischer, P., Ilg, E., Häusser, P., Hazırbaş, C., Golkov,V.,
v.d. Smagt, P., Cremers, D., & Brox, T. (2015). Flownet: Learning
optical flow with convolutional networks. In ICCV.

Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recogni-
tion. In Competition and cooperation in neural nets (pp. 267–85).
Berlin: Springer.

Gharbi, M., Chaurasia, G., Paris, S., & Durand, F. (2016). Deep joint
demosaicking and denoising. ACM Transactions on Graphics,
35(6), 191.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep
learning (Vol. 1). Cambridge: MIT Press.

Innamorati, C., Ritschel, T.,Weyrich, T.,&Mitra,N. J. (2018). Learning
on the edge: Explicit boundary handling in CNNs. In Proceedings
of the british machine vision conference (BMVC). BMVA Press.
Selected for oral presentation

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet clas-
sification with deep convolutional neural networks. In NIPS (pp.
1097–1105).

Ren, J.S., Xu, L., Yan, Q., & Sun, W. (2015). Shepard convolutional
neural networks. In NIPS (pp. 901–09).

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional
networks for biomedical image segmentation. In International
conference on medical image computing and computer-assisted
intervention (pp. 234–41).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
et al. (2015). ImageNet large scale visual recognition challenge.
International Journal of Computer Vision (IJCV), 115(3), 211–
252. https://doi.org/10.1007/s11263-015-0816-y.

Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., & Geiger,
A. (2017). Sparsity invariant CNNs. arXiv:1708.06500.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., & Brostow, G. J.
(2017). Harmonic networks: Deep translation and rotation equiv-
ariance. In CVPR.

Zhang, R., Isola, P., & Efros, A. A. (2016). Colorful image colorization.
In ECCV.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://keras.io
https://keras.io
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1708.06500

	Learning on the Edge: Investigating Boundary Filters in CNNs
	Abstract
	1 Introduction
	2 Previous Work
	3 Explicit Boundary Rules
	4 Analysis
	4.1 Methods
	4.2 Experiments

	5 Applications
	5.1 Methods
	5.2 Results
	5.3 Discussion

	6 Refined Boundary Filters
	7 Conclusion
	Acknowledgements
	References




