
INNAMORATI ET AL.: LEARNING ON THE EDGE 1

Learning on the Edge:
Explicit Boundary Handling in CNNs
Carlo Innamorati
c.innamorati@cs.ucl.ac.uk

Tobias Ritschel
t.ritschel@cs.ucl.ac.uk

Tim Weyrich
t.weyrich@cs.ucl.ac.uk

Niloy J. Mitra
n.mitra@cs.ucl.ac.uk

University College London

Abstract

Convolutional neural networks (CNNs) handle the case where filters
extend beyond the image boundary using several heuristics, such as zero,
repeat or mean padding. These schemes are applied in an ad-hoc fashion
and, being weakly related to the image content and oblivious of the target
task, result in low output quality at the boundary. In this paper, we propose
a simple and effective improvement that learns the boundary handling itself.
At training-time, the network is provided with a separate set of explicit
boundary filters. At testing-time, we use these filters which have learned
to extrapolate features at the boundary in an optimal way for the specific
task. Our extensive evaluation, over a wide range of architectural changes
(variations of layers, feature channels, or both), shows how the explicit
filters result in improved boundary handling. Consequently, we demonstrate
an improvement of 5 % to 20 % across the board of typical CNN applications
(colorization, de-Bayering, optical flow, and disparity estimation).

1 Introduction
When performing convolutions on a finite domain, boundary rules are required as
the kernel’s support extends beyond the edge. For convolutional neural networks
(CNNs), many discrete filter kernels “slide” over a 2D image and typically boundary
rules including zero, reflect, mean, clamp are used to extrapolate values
outside the image.

Considering a simple detection filter (Fig. 1a) applied to a diagonal feature
(Fig. 1b), we see that no boundary rule is ever ideal: zero will create a black
boundary halo (Fig. 1c), using the mean color will reduce but not remove the issue
(Fig. 1d), reflect and clamp (Fig. 1e and 1f) will create different kinks in a
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Figure 1: Applying a feature detection-like filter (a) to an image with different
boundary rules (b–f). We show the error as the ratio of the ideal and the observed
response. A bright value means a low error due to a ratio of 1 i. e., the response is
similar to the ideal condition. Darker values indicate a deterioration.

diagonal edge where the ground-truth continuation would be straight. In Fig. 1 we
visualize this as the error between the ideal response and the response we would
observe at a location if a feature was present. In practical feature channels, these
will manifest as false positive and negative images. These deteriorate overall feature
quality, not only on the boundary but also inside. Another, equally unsatisfying,
solution is to execute the CNN only on a “valid” interior part of the input image
(crop), or to execute it multiple times and merge the outcome slide. Working
in lower or multiple resolutions, the problem is even stronger, as low-resolution
images have a higher percentage of boundary pixels. In a typical modern encoder-
decoder [11], all will eventually become boundary pixels at some step.

Having a second thought on what a 2D image actually is, we see, that the
ideal boundary rule would be the one that extends the content exactly to the
values an image taken with a larger sensor would have contained. Such a rule
appears elusively hard to come by as it relies on information not observed. We
cannot decide with certainty from observing the yellow part inside the image in
Fig. 1b how the part outside the image continues – what if the yellow structure
really stopped? – and therefore it is unknown what the filter response should
be. However, neural networks have the ability to extrapolate information from
a context, for example in in-painting tasks [10]. Here, this context is the image
part inside the boundary. Given this observation, not every extension is equally
likely. Most human observers would follow the Gestalt assumption of continuity
and predict the yellow bar to continue at constant slope outside the image. Can a
CNN do this extrapolation while extracting features?

Addressing the boundary challenge, and making use of a CNN’s extrapolating
power, we propose the use of a novel explicit boundary rule in CNNs. As
such rules will have to depend on the image content and the spatial location of that
content, we advocate to model them as a set of learned boundary filters that simply
replace the non-boundary filters when executed on the boundary. These boundary
filters are supposed to produce exactly the same feature channels the non-boundary
filters produce. Every boundary configuration (upper edge, lower left corner, etc.)
has a different filter. This implies, that they incur no time or space overhead at
runtime. At training-time, boundary and non-boundary filters are jointly optimized
and no additional steps are required.

It seems, that introducing more degrees of freedom increases the optimization
challenge. However, introducing the right degrees of freedom, can actually turn an
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unsolvable problem into separate tasks that have simple independent solutions, as
we conclude from a reduction of error both at the interior and at the edges, when
using our method.

After reviewing previous work and introducing our formalism, we demonstrate
how using explicit boundary conditions can improve the quality across a
wide range of possible architectures (Sec. 4). We next show improvement in
performance for tasks such as de-noising and de-bayering [7], colorization [15] as
well as disparity and scene flow [5], in Sec. 5.

2 Previous Work
Our work extends deep convolutional neural networks [8] (CNNs). To our knowl-
edge, the immediate effect of boundary handling has not been looked into explicitly.
CNNs owe a part of their effectiveness to weight-sharing or shift-invariance prop-
erty: only a single convolution needs to be optimized that is applied to the entire
image [6]. Doing so, inevitably, the filter kernel will touch upon the image bound-
ary at some point. Classic CNNs use zero padding [2], i. e., they enlarge the image
by the filter kernel size they use, or directly crop, i. e., run only on a subset [9]
and discard the boundary. Another simple solution is to perform filtering with an
arbitrary boundary handling and crop the part of the image that remains unaffected:
if the filter is centered and 3 pixels wide, a 100×100 pixel image is cropped to
98×98 pixels. This works in a single resolution, but multiple layers, in particular
at multiple resolutions, grow the region affected by the boundary linearly or even
exponentially. For example, the seminal U-net [11] employs a complicated sliding
scheme to produce central patches from a context that is affected by the boundary,
effectively computing a large fraction of values that are never used. We show how
exactly such a U-net-like architecture can be combined with explicit bound-
aries to realize a better efficacy with lower implementation and runtime overhead.
Other work has extended the notion of invariance to flips [3] and rotations [14]. Our
extension could be seen as adding invariance under boundary conditions. For some
tasks like in-panting, however, invariance is not desired, and translation-variant
convolutions are used [10]. This paper shares the idea to use different convolutions
in different spatial locations. Uhrig et al. have weighted convolutions to skip pixels
undefined at test time [13]. In our setting, the undefined pixels are known at train
time to always fall on the boundary. By making this explicit to the learning, it can
capitalize on knowing how the image extends.

3 Explicit Boundary Rules
In this section we will define convolutions that can account for explicit bound-
ary rules, before discussing the loss and implementation options.

Convolution Key to explicit boundary handling is a domain decomposition.
Intuitively, in our approach, instead of running the same filter for every pixel,
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different filters are run at the boundary. In any case, they compute the same
feature. This is done independently for every convolution kernel in the network.
For simplicity, we will here explain the idea for a single kernel that computes
a single feature. The extension to many kernels and features is straightforward.
Again, for simplicity, we describe the procedure for a 2D convolution, mapping
scalar input to scalar output. The 3D convolution, mapping higher-dimensional
input to scalar output is derived similarly.

Interior

=
Edge

Corner

g2g1

f (out)

g3 g5g4 g6 g8g7 g9

+ + + + + + + +

g2g1 g3 g5g4 g6 g8g7 g9

Figure 2: Example domain decomposition for a 5×5 image. Colors encode
different filters.

A common zero boundary handling convolution ∗0 of an input image f (in)

with the kernel g is defined as

f (out)[x]∗0 g = ∑
y∈K

{
f (in)[x+y] ·g[y] if x+y ∈ D
0 otherwise,

(1)

where K is the kernel domain, such as {−1,0,1}2 and D is the image domain in
pixel coordinates from zero to image width and height, respectively. We extend
this to explicit boundary handling ∗e using a family of kernels g1,...n as

f (out)[x]∗e g1,...,n = ∑
y∈K

{
f (in)[x+y] ·gs[x][y] if x+y ∈ D
0 otherwise,

(2)

where s[x] is a selection function that returns the index from 1 to n of the filter to
be used at position x (Fig. 2). The number of filters n depends on the size of the
receptive field: For a 3×3 filter it is 9 cases, for larger fields it is more.

Loss The loss is defined on multiple filter kernel values g1,...n instead of a single
kernel. As this construction comprises of linear operations only (the selection
function can be written as nine multiplications of nine convolution results with
nine masks that are 0 or 1 and a final addition), it is back-propagatable.

Implementation A few things are worth noting for the implementation. First,
applying multiple kernels in this fashion has the same complexity as applying
a single kernel. Convolution in the Fourier domain, where costs would differ,
is typically not done for kernels of this size. Second, the memory requirement
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is the same as when running with common boundary conditions. All kernels
jointly output one single feature image. The boundary filters are never run and no
result is stored at the interior. The only overhead is in storing the filter masks. In
practice however, implementation constants might differ between implementations,
in particular for parallel machines (GPUs).

The first practical option for implementation is the most compatible one that
just performs all nine convolutions on the entire image and later composes the nine
images into a single image. This indeed has compute and memory cost linear in the
number of filters, i. e., nine times more expensive, both for training and deployment

To avoid the overhead, without having to access the low level code of the
framework in use, the additional kernels can be trained on the specific sub-parts of
the input that they act on and then composited back to form the output.

4 Analysis

We will now analyze the effect of border handling for a simplified task and different
networks: learning how to perform a Gaussian blur of a fixed size. Despite the
apparent simplicity, we will see, how many different variants of a state-of-the-art U-
net-like [11] architecture all suffer from similar boundary handling problems. This
indicates, that the deteriorating effect of unsuccessful boundary handling cannot be
overcome by adapting the network structure, but needs the fundamentally different
domain decomposition we suggest.

4.1 Methods

Task The tasks is to learn the effect of a Gauss filter of size 13×13 to 128×128
images, obtained from the dataset used for the ILSVRC [12] competition, com-
prising of over one million images selected from ImageNet [4]. The ground truths
were computed over 128+ 12× 128+ 12 images, which were then cropped to
128×128.

Metrics We compare to the reference by means of the MSE metric, which was
also used as the loss function. The models were selected by comparing the loss
values over validation set, while the reported loss values were separately computed
over a test set comprising of 10 k examples.

Architecture We use a family of architectures to cover both breadth and width
of the network. The breadth is controlled by the number of feature channels and the
depth by the number of layers. More specifically, the architecture comprises of nl
layers. Each layer performs a convolution to produce nf feature channels, followed
by a ReLU non-linearity. We choose such an architecture, to show that the effect
of boundary issues is not limited to a special setting but remains fundamental.
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Boundary handling We include our explicit handling, as well as the classic
zero strategy that assumes the image to be 0 outside the domain and reflect
padding, that reflects the image coordinate around the edge or corner.

4.2 Experiments

Here, we study how different architecture parameters affect boundary quality for
each type of boundary handling.
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Figure 3: Analysis of different architectural choices using different boundary
handling (colors). First, (a) we increase feature channel count (first plot and
columns of insets). The vertical axis shows log error for the MSE (our loss) and
the horizontal axis different operational points. Second (b), depth of the network is
increased (second plot and first 4 columns of insets). Third, (c) both are increased
jointly. The second row of insets shows the best (most similar to a reference)
result for each boundary method (column) across the variation of one architectural
parameter for a random image patch (input an reference result seen in corner).

Varying depth When varying depth nl from a single up to 7 layers (Fig. 3a) we
find, that our explicit boundary handling performs best on all levels, followed
by reflect boundary handling and zero. The feature channel count is held
fixed at nf = 3.

Varying feature count When varying feature channel count nf, it can be seen
that explicit leads the board, followed by reflect and zero (Fig. 3b). The
depth is held fixed at nd = 2.

Varying feature count and depth When varying both depth nl and feature
channel count nf, seen in Fig. 3, c we find, that again no architectural choice can
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compensate for the boundary effects. Each of the seven steps increase feature count
by 3 and depth by 1.

Statistical analysis A two-sided t test (N = 10,000) rejects the hypothesis that
our method is the same as any other method for any task with p < .001.

5 Applications
Now, we compare different boundary handling methods in several typical applica-
tions.

5.1 Methods
Architecture We use an encoder-decoder network with skip connections [11]
optimized for the MSE loss using the ADAM optimizer . Details are shown in our
supplemental materials. The architecture is different from the simplified one in the
previous section where it was important to systematically explore many possible
variants. The encoding proceeds in 3×3 convolution steps 1 to 7, increasing the
number of feature channels from 1 to 256. There is a flat 1×1 convolution at the
most abstract representation at stage 8. Decoding happens on stages 9 to 14. This
step resizes the image, convolves with stride 1 and outputs the stated number of
feature, followed by a concatenate convolution by the stated skip ID and finally a
convolution with stride 1 that outputs the stated number of features (ResConv).

Note, that boundary handling is required at all stages except 8. For the down-
branch 1–7 this can be less relevant as strides do not produce all edge cases we
handle, e. g., the boundary pixels on the bottom of the input are skipped in an even
resolution scheme.

Measure We apply different task-specific measures: Gauss filtering and Col-
orization produce images for human observers and consequently are quantified
using DSSIM. De-Bayering, as a de-noising task, is measured using the PSNR
metric while disparity and scene flow are image correspondence problems with
results in pixel units.

Additionally, we propose to measure the success as the loss ratio between
the test loss of our architecture with and the test loss of an architecture without
explicit boundary handling, using the MSE metric. We suggest to use the ratio as it
abstracts away from the unit and the absolute loss value that depends on the task,
allowing to compare effectiveness across tasks.

5.2 Results
Gauss blur Gauss filtering is a simple baseline task with little relevance to
any practical application as we know the solution (Sec. 4.) It is relevant to our
exposition, as we know that, if the network had seen the entire world (and not just
the image content) it would be able to solve the task. It is remarkable, that despite
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Table 1: Quantitative results. Different rows are different tasks. Different columns
express different measures and different methods. Absolute error is measured
using different metrics (eventually not identical to the loss), while the Error ratio
is expressed as the ratio of the loss of our method over the opposing boundary
rules. Best is bold.

Absolute error Error ratio
Other metric MSE ratio

Task Src Unit refl zero Ours refl zero Ours

Gauss filtering DSSIM .0018 .0022 .0016 79 % 83 % 100 %
De-noise/Bayer [7] PSNR 31.46 31.50 31.94 90 % 89 % 100 %

Colorization [15] DSSIM .1593 .1604 .1577 99 % 98 % 100 %
Disparity [5] px 1.538 1.511 1.403 84 % 88 % 100 %

Scene flow [5] px 1.380 1.183 1.096 56 % 73 % 100 %

the apparent simplicity of the task – it is a single linear filter after all – the absolute
loss is significant enough to be visible for classic boundary handling. It is even
more surprising, that the inability to learn a simple Gauss filter does not only result
in artifacts along the boundaries, but also in the interior. This is to be attributed
to the inability of a linear filter to handle the boundary. In other words, a network
without explicit boundary handling is unable to learn a task as easy as blurring an
image. We will see that this observation can also be made for more complex tasks
in the following sections.

De-noising and De-bayering In this application we learn a mapping from noisy
images with a Bayer pattern to clean images using the training data of Gharbi et al.
[7]. The measure is the PSNR, peak signal-to-noise ratio (more is better). We
achieve the best PSNR at 31.94, while the only change is the boundary handling.
In relative terms, traditional boundary handling can achieve only up to 90% of
MSE.

Colorization Here we learn the mapping from grey images to color images using
data from Zhanget al. [15]. The metric again is DSSIM. We again perform slightly
better in both absolute and relative terms.

Disparity and scene flow Here we learn the mapping from RGB images to
disparity and scene flow using the data from Dosovitskiyet al. [5]. We measure
error in pixel distances (less is better). Again, adding our boundary handling
improves both absolute and relative error. In particular, the error of reflect and
zero is much higher for scene flow.

6 Discussion

We now will discuss the benefit and challenges of explicit boundary handling.
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Figure 4: Mean errors across the corpus visualized as height fields for different
tasks and different methods. Each row corresponds to one task each column to one
way of handling the boundary. Arrow A marks the edge that differs (ours has no
bump on the edge). Arrow B mark the interior that differs (ours is flat and blue,
others is non-zero, indicting we improve also inside). Arrow C shows corners, that
are consistently lower for us.

Overhead Here we study four implementation alternatives for Sec. 3. They were
implemented as a combination of OpenGL geometry and fragment shaders. The
test was ran on a Nvidia Gefore 480, on a 3 mega-pixel image and a 3×3 receptive
field.

The first method uses a simple zero-padding provided by OpenGL’s sampler2D,
invoking the GS once to cover the entire domain and applying the same convolution
everywhere. This requires 2.5 ms. This is an upper bound for any convolution
code.

The second implementation executes nine different convolutions, requiring
22.5 ms. This invokes the GS nine times, each invoking all pixels.

The third variant invokes the GS once and a conditional statement for all pixels
selects the kernel weights per-pixel in the domain. This requires 11.2 ms.

The fourth variant, a domain decomposition, invokes the GS nine times to draw
nine quads that cover the respective interior and all boundary cases as seen in recall
Fig. 2. Even after averaging a high number of samples, we could not find evidence
for this to be slower than the baseline method i. e., 2.5 ms. This is not unexpected,
as the running time for a few boundary pixels is below the variance of the millions
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of interior pixels.
In practice, the learning is limited by other factors such as disk-IO. Our current

implementation in Keras [1], offers a simple form of domain decomposition. We
tested the performance loss over epochs with an average duration of 64 seconds.
Our method results in a 0.2%̇ average performance loss over the classic zero rule.

Scalability in receptive field size For small filters, the number of cases is small,
but grows for larger filters. Fortunately, the trend is to rather cascade many small
filters in deeper network, instead of shallower networks with large filters.

Structure Here we seek to understand where spatially in the image the differ-
ences are strongest. While our approach changes the processing on edges, does it
also affect the interior? We compute the per-pixel MAE and average this over all
images in the corpus. The resulting error images are seen in Fig. 4. We found the
new method to consistently improve results in the interior regions. It looks as if
the new boundary rules effectively âĂIJshieldâĂİ the inner regions from spurious
boundary influences. The results at the boundaries are very competitive too, often
better than zero and reflect boundary handling. Note, that it is not expected
for any method, also not ours, to have a zero error at the boundary: this would
imply we were able to perfectly predict unobserved data outside of the image.

Epoch

Lo
ss

explicit

reflect

zero

0 100
.0001

.1

.01

.001

Figure 5: Convergence rate
with different types of bound-
ary handling.

Convergence Convergence of both our approach
and traditional zero boundary handling is seen in
Fig. 5. We find, that our method is not only result-
ing in a smaller loss, but also does so at the same
number of epochs. Before we have established that
the duration of epoch are the same for both methods.
We conclude there is no relevant training overhead
for our method.

Practical alternatives There are simpler alterna-
tives to handle boundaries in an image of np pixels.
We will consider a 1D domain as an example here.

The first is to crop nc pixels on each side and compute only np−2nc output pixels.
The cropping nc is to be made sufficiently large, such that no result is affected by
a boundary pixel and nc depends on the network structure. In a single-resolution
network of depth nd with a receptive field size of 2nr +1, we see, that nc = nd×nr.
In a multi-resolution network however, the growth is exponential, so nc = nnd

r , and
for a typical encoder-decoder that proceeds to a resolution of 1×1, every pixel
is affected. This leaves two options: either the minimal resolution is capped and
the CNN is applied in a sliding window fashion [11], computing always only the
unaffected result part, incurring a large waste of resources, or the network simply
has to use its own resources to make do with the inconsistent input it receives.
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7 Conclusion
In traditional image processing, the choice of boundary rule was never fully
satisfying. In this work, we provide evidence, that CNNs offer the inherent
opportunity to jointly extract features and handle the boundary as if the image
continues naturally. We do this by learning filters that are executed on the boundary
along with traditional filters executed inside the image. Incurring little learning
and no execution overhead, the concept is simple to integrate into an existing
architecture, which we demonstrate by increased result fidelity for a typical encoder-
decoder architecture on practical CNN tasks.
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