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Abstract. We investigate the advantages of a stereo, multi-spectral
acquisition system for material classification in ground-level landscape
images. Our novel system allows us to acquire high-resolution, multi-
spectral stereo pairs using commodity photographic equipment. Given
additional spectral information we obtain better classification of vege-
tation classes than the standard RGB case. We test the system in two
modes: splitting the visible spectrum into six bands; and extending the
recorded spectrum to near infra-red. Our six-band design is more prac-
tical than standard multi-spectral techniques and foliage classification
using acquired images compares favourably to using a standard camera.
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1 Introduction

Material classification from images is an important task across machine vision
and computational photography, with applications in a wide range of domains.
One established use is in the classification of foliage and other land cover in
remote, multi-spectral, LandSat data. In this case, multi-spectral techniques
are key to accurate classification. However, they are also slow, costly and less
practical to apply to ground-level image acquisition. Importantly, no mechanism
exists to capture multi-spectral images with a hand-held camera in a single shot.

Previously spectral reconstruction has been achieved with a stereo consumer
compact camera [11]. Such a system is faster, more practical, and cheaper than
a true multi-spectral imaging system and results in six-band, stereo image data.
Output is high resolution and images can be captured at high speed or as video.

Several systems are available for multi-spectral 3D imaging spectroscopy for
close-range settings [8]. Such implementations often require a laboratory setting
making them impractical for use in an uncontrolled setting.

Additionally, spectral multiplexing can be achieved using triple band-pass,
dichroic filters, such as those used in Dolby’s more recent cinema technology [4].

We explore a novel camera design that aids classification by increasing the
spectral information known about a scene. We evaluate the design on the ex-
ample of foliage classification where, additional colour information is extremely
important. In such a case, multi-spectral image acquisition is expensive and im-
practical while standard RGB imaging lacks accuracy. We create a single-shot,



six-channel, multi-spectral acquisition system. We use this system to address the
problem of material classification in ground-level, landscape imagery.

Our system is built using off-the-shelf, commodity hardware: a standard SLR
camera, stereo lens and selected filters. We exploit triple band-pass filters ex-
tracted from commercial 3D cinema glasses. Each spectral band passed through
one of these filters falls into one of the red, green and blue camera response
curves. The transmission spectra of the filters themselves are non-overlapping in
the visible spectrum, with little information lost between them. This allows cap-
ture of additional spectral information in the visible range, splitting the visible
spectrum into six bands (rather than the standard three, RGB).

As we demonstrate, foliage classification especially benefits from additional
spectral channels due to the very distinct ‘spectral footprints’ shown by differ-
ent plant species. Whilst these spectra are dominant in the green region of the
visible spectrum (around 550nm), they become much more pronounced in the
near infra-red region (upwards of 700nm). This drives us to investigate a sec-
ond configuration of the system investigating the near infra-red (NIR) spectrum
alongside the visible. We implement this using band-pass filters for the regions
of the spectrum above and below 720nm. The system allows for reduced error
rates for foliage classification in ground-level landscape scenes in both cases.

A significant advantage to our system is its portability and ease-of-use in
outdoor environments. As such, we compare our multi-spectral implementation
to using a normal SLR camera for image acquisition.

2 Related Work

Multi-spectral imaging typically captures several non-overlapping spectral bands.
This non-overlapping property distinguishes it from standard RGB imaging.
Whilst hyper-spectral techniques are mostly applied to remote sensing and re-
quire specialised equipment such as tunable band-pass filters, multi-spectral sys-
tems are both more practical and cheaper, often using exchangeable filters or
multiple band-pass filters which can be combined with a standard RGB camera.

Multi-spectral imagery has applications in a number of fields, from recovering
the reflectance spectrum at a given point to recording and analysing the Earth’s
surface vegetation. However, whilst remote sensing systems often incorporate
classification methods for analysis of the images, this has been a much lesser
used technique for ground-level multi-spectral systems.

2.1 Multi-spectral Image Acquisition

3D multi-spectral image capture can be broadly categorised by three main meth-
ods: dispersive elements, diffractive media (diffraction grating) or by filtering
with exchangeable or tunable bandpass filters.

Habel et al. [6] present a low-budget solution for multi-spectral photography.
By creating a custom lens element using off-the-shelf parts, and with careful
calibration, they create a low-cost Computed Tomography Image Spectrometer



(CTIS). Whilst this diffraction-grating implementation yields a high spectral
resolution in a single shot, the spatial resolution is extremely limited.

Tsuchida and Tanaka [14] present a 6-band, 2-image multi-spectral system.
Given the intensity spectrum of the light source, they estimate spectral re-
flectance using a large-format camera and interference filters. Image capture
is slow, using a scanning sensor to scan the scene line by line. This necessitates
a static scene and although high resolution is achieved, the system is costly and
impractical for dynamic scenes.

Fyffe et al. [4] demonstrate the use of dichroic, triple-band-pass, interference
filters for spectral multiplexing. By altering the light sources for a scene, they
obtain dense surface normals and surface colour reflectance from a single shot.
This is easily extended to dynamic scenes but is not practical for outdoor scenes
where the lighting may not be modified. The use of a beam splitter means that
the problem of correspondence between shots is avoided, assuming a negligible
disparity.

Finally, spectral reconstruction can be achieved with a stereo consumer com-
pact camera as shown by Shrestha et al. [11]. They present a stereo, multi-
spectral configuration focusing on spectral reconstruction rather than the stereo
implications of the system.

We take a similar approach, using a stereo lens with tri-band-pass interference
filters, as well as investigating the visible and NIR case.

2.2 Imaging for Classification of Vegetation

In the vast majority of vegetation classification tasks, hyper-spectral images
are captured remotely and processed using texture filtering across the spectral
bands. As plant species have unique spectral footprints in both the green and
NIR parts of the spectrum, spectral images which focus on these ranges are often
used. Hernandez et al. [7], for example, find that red and short-wave infra-red
bands produce the best classification results in satellite imagery.

Also in remote sensing, Yu et al. [16] attain a detailed, object-based classifi-
cation of simple vegetation classes using images with a high spatial resolution.
In this case, blue, green, red and NIR comprise the spectral features used for
classification along with band-ratio and spectral-derivative features and other
textural and topographic features.

Shading and atmospheric interference effects can be very detrimental to veg-
etation classification, leading to high variation of the spectral distribution within
a class, which cannot be modelled linearly [16]. Hue, however, is dependent on
the spectral range but independent of illumination intensity changes [10], making
it an important feature for classification [16].

Tanser and Palmer [9] compute a spectral reconstruction of vegetation classes
based on ten spectral bands using mean, variation and co-variance parameters,
and comparing with a tri-band approach. Their results show that, although more
detailed spectral information considerably improves the classification result, it is
still insufficient for high quality classification. They then use texture, particularly
a Moving Standard Deviation Index, to supplement the classification.



At ground level, laser scanners can be used to create 3D maps of an environ-
ment [15] (with particular application in simultaneous localisation and mapping
problems) which can be used for classification. Similarly, a ground-level survey
can be carried out. This can be more accurate, but is also incredibly inefficient.
Other ground-level approaches involving multi-spectral cameras are often im-
practical because of the less-portable nature of these systems and the need to
take many sequential, filtered images of a potentially moving scene.

3 System Design and Image Acquisition

We build two systems with the following hardware. Both feature a twin-aperture,
stereo lens (see Figure 1), then each of the following combinations are used:
complementary triple band-pass filters (Figure 1) and standard DSLR; or 730 nm
IR long-pass filter and 400-720 nm band-pass filter and an IR-modified DSLR.

Fig. 1. Commercial stereo cinema glasses using dichroic, tri-band-pass, interference
filters; twin-aperture stereo lens (left) and corresponding transmission spectra (right).

Filtering the images implies a significant proportion of the available light
is lost. This means a compromise must be made between a fast shutter speed,
narrow aperture and low sensor gain. Faster shutter speeds ensure that motion is
frozen whilst a narrow aperture ensures that the depth of field is large enough to
capture the scene. Subr et al. [12] investigate the effects that a low light budget
can have on stereo reconstruction, finding that gain, exposure time and aperture
restrictions lead to significant degradation of the resulting depth image but that
often a compromise can be reached, determined by the type of scene.



For landscape scenes, we use a narrow aperture to obtain the greatest depth
of field; however, as the filters block a significant proportion of available light,
we find this is limited to f/11. We use an ISO of 1250 and a tripod to compensate
for any camera shake caused by the shutter speeds required – 1/40 s to 1/60 s.

The stereo facility of the lens is both a drawback and benefit to our system.
Whilst stereo matching in image pairs aquired under varying illumination is
more challenging, we also gain information about the depth of points in the
scene, which augments classification. We rectify and register the images based
on SURF features. This then allows us to compute good disparity maps between
filtered pairs of images using LibELAS [5]. In our implementation, ordinary
SURF features perform equally as well as alternative approaches such as multi-
spectral SIFT features [13, 3].

We find disparity maps more difficult to compute in the tri-band-filtered case
due to the different spectra observed by each image. This leads us to filter only
one image, using a neutral density filter (ND4) for the unfiltered image to ensure
appropriate exposure. The overlap between observed spectra then allows better
correlation between images and so depth recovery is more successful, retaining
additional spectral information.

We find that radiometric distortion is generally less of a problem for feature
matching in the visible-NIR case and that good depth maps can be recovered
simply using SURF features for rectification followed by LibELAS [5].

4 Supervised Classification in Six-Band, Stereo Images

The system aims to aid classification by increasing the spectral information
known about a scene. Using the raw captured image pairs, we label several
distinct classes in the RGB image and apply Random Forest classification [2].

We label each image with the classes: grass (two types), tree (two types),
sky, and man-made, extracting colour and texture features for classification.

Previous work [1] has shown that colour, hue in particular, and entropy are
the most successful features for vegetation classification in landscape images.
Hence we use the 6-colour RGB bands and their transformed values in HSV space
(Hue, Saturation and Value) along with local entropy. Colour features alone are
not sufficient for material classification [9] and so we apply 2-dimensional discrete
stationary wavelet response filters to enhance the classifier. As texture features
change with the scale of the material, we also use the disparity map as a feature.

5 Results

We capture sets of 30 images for each mode of the system (tri-band and infrared
filtering), under otherwise identical conditions. Images cover a park landscape
in summer with varied vegetation.

We evaluate our system on the task of foliage classification first testing the
classifier on monocular image data using the visible-spectrum images from each
dataset. This gives us a point of comparison for the datasets we generate.



Classifier input data Tri-band Tri-band Infrared Infrared
Pixel Super-pixel Pixel Super-pixel

Right image 0.0233 0.1967 0.0391 0.2786

Left image 0.0240 0.1977 0.0384 0.2790

Right image and disparity 0.0212 0.1966 0.0375 0.2789

Left image and disparity 0.0315 0.2228 0.0418 0.2594

Right and left images 0.0198 0.1988 0.0227 0.2426

Right and left images with disparity 0.0199 0.1941 0.0221 0.2419

Table 1. Classification error results, showing classification error as different inputs
are used with either pixel-based or super-pixel classification (right image filtered as
detailed).

In both implementations, the left stereo image always represent the visible
spectrum whereas the right image is filtered. We rely on relevance detection
in the random forest implementation and comparing classification error with
different combinations of left and right images and disparity as input.

We also compare using a pixel classifier to a super-pixel classifier, noting that
the wavelet features we use incorporate a sense of spatial extent and that the
texture features may render super-pixels superfluous.

Table 1 details the error achieved against the data set used. The lowest
error occurs when both images from the multi-spectral pair are used. Use of the
disparity map has little influence, and using tri-band filters to split the visible
spectrum results in lower error than extending the spectrum to NIR light.

6 Discussion

There are several conclusions we can draw from our results.

– Imaging with tri-band filtering performs better than imaging over the visible
and NIR parts of the spectrum, despite the strong NIR reflectance of foliage.
This implementation gives us only one effective additional colour channel so
the information gained is lower then the tri-band case.

– Pixel-based classification performs better than super-pixel classification –
probably because texture filters already contain some spatial information
which makes super-pixels unnecessary.

– The most favourable results are obtained using a filtered pair of images in
the visible spectrum, that is, splitting the visible spectrum into six bands
rather than the standard three.

Given that vegetation has a pronounced footprint in the NIR spectrum, it
is surprising that the visible-NIR test case does not out-perform the tri-band-
filtered case. The most likely explanation is that the NIR images, due to the
sensitivity of the image sensor, yield only one additional grey-scale channel and
as such there is limited information gained in this case. In both cases, however,
it is clear that additional spectral information improves the classification result.



Fig. 2. Sample classification results showing visible improvement when image pairs are
used for classification. Top, tri-band filtering results; bottom, visible-infrared filtering
results. For each set, from top: original unfiltered image; classification using unfiltered
images only; classification using both images from the pair.

Identifiable sources of error in the experiments include the following: prede-
fined classes covered a large number of potential sub-classes such as tree species;
and man-made structures such as paths and houses were grouped together. Also,
data we acquire samples only a single type of landscape and so there is a pos-
sibility that the random forest is over-trained on this data-set and would not
produce good results for any other environment.

7 Conclusion

We conclude that our novel, multi-spectral system leads to improved foliage
recognition in ground-level landscape imagery whilst being more practical and
lower cost than current alternatives, and we claim that additional spectral data
improves material classification in landscapes.

Although the incorporation of depth information does marginally reduce clas-
sification error, the biggest improvement is seen when multi-spectral images are
used. We suggest then, that colour features still have more of an impact than
texture features in classification of different foliages classes but note that further
testing would be required in order to validate this.
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