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Figure 1: Simulated reconstuctions of metameric varifocal holograms. Our holograms reconstruct single-plane images at the
correct focus levels, reconstructing high-resolution visuals at a user’s fovea while displaying statistically correct content across their
peripheral vision indistinguishable from the target images (metamers). Top row: simulated image reconstructions at two different
focus levels (gaze location marked with a dot). Bottom row: zoomed-in insets from these two reconstructions. All foveated images in
this paper are best viewed at a 60 cm wide display from a distance of 80 cm. (Three-dimensional assets from Vilém Duha ©2021)

ABSTRACT

Computer-Generated Holography (CGH) offers the potential for gen-
uine, high-quality three-dimensional visuals. However, fulfilling this
potential remains a practical challenge due to computational com-
plexity and visual quality issues. We propose a new CGH method
that exploits gaze-contingency and perceptual graphics to accelerate
the development of practical holographic display systems. Firstly,
our method infers the user’s focal depth and generates images only
at their focus plane without using any moving parts. Second, the
images displayed are metamers; in the user’s peripheral vision, they
need only be statistically correct and blend with the fovea seamlessly.
Unlike previous methods, our method prioritises and improves foveal
visual quality without causing perceptually visible distortions at the
periphery. To enable our method, we introduce a novel metameric
loss function that robustly compares the statistics of two given im-
ages for a known gaze location. In parallel, we implement a model
representing the relation between holograms and their image recon-
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structions. We couple our differentiable loss function and model to
metameric varifocal holograms using a stochastic gradient descent
solver. We evaluate our method with an actual proof-of-concept
holographic display, and we show that our CGH method leads to
practical and perceptually three-dimensional image reconstructions.

Keywords: Computer-Generated Holography, Foveated Render-
ing, Metamerisation, Varifocal Near-Eye Displays, Virtual Reality,
Augmented Reality

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Perception; Hardware—
Communication hardware, interfaces and storage—Displays and
imagers

1 INTRODUCTION

In recent years, improving display technology to enable lifelike
three-dimensional visuals has attracted much attention from industry
and academia as displays are crucial for future Human-Computer
Interaction (HCI) [33]. An emerging trend, Computer-Generated
Holography (CGH) [47], promises such realistic visuals in the next-
generation of displays [29]. Unlike conventional displays, pixelated
images are not sent to holographic displays directly.

In a typical phase-only Spatial Light Modulator (SLM)-based
holographic display, laser light illuminates an array of pixels which
modulate the phase of the light. The reflected light interferes to
produce the image. Finding the correct phase values to send to the
SLM is challenging due to the complexity of light transport. Also,
SLMs have limited resolution. As a result, real CGH displays suffer
from noise and other artefacts.

Gaze-contingent approaches [1, 27] are often used to reduce the
hardware and computational requirements of displays. In this work,



we explore whether gaze-contingency for CGH can help meet the
demands of the Human Visual System (HVS) in practice. Knowing
the user’s gaze gives us two critical pieces of information we exploit.

First, it tells us which parts of the image fall in the user’s periphery,
rather than their fovea. To exploit this, we draw inspiration from
the state of the art in foveated graphics literature [53]. This work
focuses on generating visuals which are not pixel-accurate to a target
image in the periphery of the user’s vision, but are still perceived
as identical to the target. We exploit their work to dedicate more of
the expressive power of the SLM to generating high-quality visuals
at the fovea as described in work by Chakravarthula et al. [11]. In
contrast, visuals at the periphery need only be statistically correct (in
a sense precisely described in Sec. 3.2) and will still be perceived as
accurate. As highly accurate simulation models become available in
the future, such a method can pave the way towards distributing the
speckle noise at a holographic display [13] in a statistically correct
way, enabling indistinguishable images at the periphery in the future.

Second, given the depths of each pixel in the displayed image,
it allows us to infer the user’s current focal depth. We can use this
information to only enforce our reconstruction to be correct at the
user’s current focus. Whilst CGH is certainly capable of displaying
multi-plane images, this often leads to image quality issues as the
hologram pixels are used to deliver images at multiple planes at
once. For that purpose, we draw inspiration from existing literature
on varifocal near-eye displays [2, 34] and varifocal holograms [37].
We argue that generating images at a single plane instead of multiple
planes will help assure quality in visuals generated by CGH. We
combine these arguments to enable CGH computation pipelines that
are perceptually accurate and offer high visual quality.

Specifically, this work introduces the following contributions:
(1) Metameric loss function. We introduce a fast metameric loss
that can help us quantify image quality within the peripheral field
of view by comparing the statistics of images. We believe this loss
couples well with a gaze-contingent display and graphics application,
specifically holographic displays, as they are often proposed as the
next-generation display technology.
(2) Metameric varifocal holograms. We introduce a complete
optimisation pipeline for metameric varifocal holograms using our
metameric loss function. Note that our holograms change focus in
a gaze-contingent manner, avoiding the complexity of representing
light fields or multiplane images using CGH;
(3) Proof-of-concept prototype. We build a single colour holo-
graphic display to experiment with our metameric varifocal holo-
grams. We assess the results of our CGH method using this proof-
of-concept display.

2 RELATED WORK

Our work combines the state of the art in visual perception and CGH
while relying on gaze contingency. Hence, we review the relevant
work in visual perception, gaze-contingent displays and CGH fields.

2.1 Gaze-contingent displays

Eye-gaze tracking [4, 30] is of great interest to AR and VR research.
A major reason for this is that visual [17] and depth acuity [55]
of the HVS drops sharply with increasing eccentricity towards far
peripheral vision. Combined with the visual and depth acuity of
HVS, eye-gaze information opens up opportunities towards reducing
computational and hardware complexity of displays. Such displays
that take advantage of eye-gaze information are known as gaze-
contingent displays.

A form of gaze-contingent displays – foveated displays [48] –
present images at high resolution at the fovea and lower resolution
at the periphery. A foveated display tracks a user’s gaze and can
either actively move a foveal inset display [51], move both foveal
and peripheral insets [27], or change the distribution of resolution

by distorting optical fields [1] to generate images with fewer pixels
but with no perceptual difference.

Our work falls into the category of foveated displays. It merges
the ideas of distorting [1] or shifting [2] optical fields while taking
advantage of CGH in a foveated manner following the spirit of the
work by Chakravarthula et al. [11]. A major advantage of CGH in
this setting is that it can facilitate foveated rendering without the
need for moving parts in the form of displays or lenses.

2.2 Metamers
Most popular foveated rendering approaches focus on decreasing
resolution with increasing eccentricity [19, 56]. However, traditional
literature on human vision [5] refers to the objects in the periphery as
difficult to see and different, but not particularly blurry. Objects are
not only less sharp, but the size of stimuli [60], visual crowding [21]
and texture content [52] also play an important part in how things
are perceived. For a comprehensive review of the behavior and the
limitations of peripheral vision, we recommend the review from
Rozenholtz [41].

With this in mind, Freeman and Simoncelli [18] showed that
it is possible to devise a process to generate “ventral metamers”;
pairs of images perceived as identical for a given fixation point (see
Fig. 2). Their work [18] models the correlation between the size
of pooling regions and different eccentricities, describing visuals in
the periphery with local image statistics rather than individual pixel
values. Unfortunately, their process is computationally expensive
as it depends on complex image statistics and iterative optimisation
processes. Deza et al. [14] proposed an approach to approximate
this effect using techniques from style transfer [20], blending Visual
Geometry Group (VGG) network [46] features of the target image
with those from a noise image using Adaptive Instance Normalisa-
tion (AdaIN)[23] over foveated pooling regions. Similarly, recent
work from Surace et al. [49] uses a texture synthesis approach com-
bined with Generative Adversarial Networks (GANs) to generate
ventral metamers. There is no guarantee that the generated visuals
will be statistically correct for any known human vision model in
both cases. These techniques are also unable to operate at interac-
tive framerates, although they are significantly faster than that of
Freeman and Simoncelli [18].

To our knowledge, the first work that achieves generation of ven-
tral metamers at interactive rates is the work by Walton et al. [53],
which uses a simplified statistical model focused on using fast cal-
culated means and variances of a steerable pyramid [38]. Their
simplified model allows fast synthesis of metamers by scaling and
biasing bands of a steerable pyramid constructed from a noise image.

Our work reformulates their model [53] as a general-purpose
differentiable loss function. This opens it up to a range of other
applications, including but not limited to CGH as described in this
paper.

2.3 Computer-Generated Holography
CGH has garnered much interest from the research community in
recent years. This interest primarily stems from the widespread
availability of powerful, highly parallel processors coupled with
modern machine-learning frameworks that automatically differenti-
ate given models [36]. These advancements accelerate and improve
the accuracy of hologram generation (phase retrieval), particularly
when taking advantage of advances in deep learning [59]. As a re-
sult, modern phase retrieval techniques offer dramatically improved
image quality over classical hologram calculation methods such as
the Gerchberg-Saxton method [57]. From the recent past, the work
by Chakravarthula et al. [9] revisits Wirtinger complex derivatives
and shows that the visual quality of two-dimensional image recon-
structions in CGH can be improved in common Gerchberg-Saxton
and Double-phase coding [22] approaches. The works by Peng et
al. [37] and Chakravarthula et al. [10] help to bridge the gap between



Figure 2: A sample metamer display at the top row is generated by
following the work by Walton et al. [53] using a gaze location at the
center of the image (red dot at the center). For comparison purposes,
we also show the ground truth image at the right portion of the same
image. Red highlighted regions from the top image are zoomed-in
and provided as insets at the bottom row.

CGH simulations and actual image reconstructions in a physical dis-
play by learning a model of display hardware using a camera and
convolutional neural networks. Their findings have drastically im-
proved the quality of two-dimensional image reconstructions in
actual holographic displays. Closest to our work, Chakravarthula
et al. [11] show that naı̈ve foveation using an importance map can
help to combat speckle in two-dimensional CGH image reconstruc-
tion. Their technique does not guarantee peripheral visuals that are
indistinguishable from a target image, however.

Meanwhile, three-dimensional image reconstructions in holo-
graphic displays have also seen dramatic improvement. The work
by Maimone et al. [31] represents each point in a three-dimensional
scene by adding a relevant sub-hologram to a final hologram. Their
work exploits separable functions and introduces superior image
quality with their fast pointwise method. Meanwhile, alternative
approaches [43] that treat a three-dimensional scene as a multi-view
image stack also prove themselves in terms of image quality. How-
ever, all of these approaches are computationally expensive, do not
yet run at interactive rates and require a high level of sophistica-
tion in data representations. The work by Shi et al. [44] shows that
pointwise approaches can potentially run at interactive rates with a
learning methodology that cleverly stitches occluded sub-holograms
to a final hologram. Thus, their work paves the way towards three-
dimensional CGH at interactive rates in the future.

Our work deals with two-dimensional image reconstructions
in CGH. However, unlike existing work, our holograms actively
change the depth plane with a user’s focus and use state-of-the-art
perceptual graphics to maintain the highest visual quality possible.
In addition, our work does not require sophisticated data representa-
tions (we operate on images rather than three-dimensional data). To
our knowledge this is a unique combination, and we believe it can
pave a path to practical CGH.

3 METHOD

Our simulation pipeline is composed of two primary blocks, a holo-
graphic display model (Sec. 3.1) and a perceptual model (Sec. 3.2)
which is used to define our metameric loss. Both blocks are dif-
ferentiable and have no tunable or learned components. Our work

aims to optimise the input to the display (phase values, φ ) such that
the difference between the resulting percept and the percept of a
reference image It is minimised (Fig. 3). To this end, we rely on a
display model H and a model of perception P.

The display model H(z) will map phase values to image intensities
at a certain distance z. Note that in a varifocal display [2, 16, 40],
the required focus z is assumed to be known at every frame. How
light is propagated will depend on that focus distance.

The perception model P maps image intensities into a perceptual
space where distances between points are perceptually uniform [18,
53]. This means that images which are perceived as similar should
map to nearby points in the perceptual space, and images perceived
as dissimilar should map to more distant points.

Putting both display and perception model together, we optimise

argminφ M (H(z) ·φ , It). (1)

where M is our metameric loss function, defined as:

M (A,B) := |P(A)−P(B)|2. (2)

We provide details of our display and perceptual model in the
following Sec. 3.1 and Sec. 3.2.

3.1 Display system and model
We use a combination of an actual holographic display and a com-
monly accepted differentiable model of that display hardware.
System:We design phase-only diffractive components that can either
be represented with a static diffractive optical element [50] or a
programmable phase-only SLM [42]. While amplitude modulation
physically blocks light, phase-only holograms are a light-efficient
form of optical beam shaping. More sophisticated versions of these
components such as cascaded [32] or volumetric [24] holograms do
not fall into the scope of this work. Importantly, such a system can
be reliably modeled using a differentiable operator, explained next.
Model: The relation between a complex light wave with unit ampli-
tude and phase φ leaving our phase-only SLM and the light wave
u(z) at the image plane depth z is described by the Fresnel diffraction
operator H as u(z) = H(z) ·φ . For derivation of this operator see [7]
and section 1 of the supplementary material for implementation
details. Notably, H is a linear operator and hence differentiable and
can be used to optimise holograms [58].

In our case, z varies when the user changes gaze g but is fixed
for any point in time where there is a unique gaze and a unique
focus. The HVS perceives intensity (wave amplitude-square) of
light; therefore, the perceived reconstructed image, Ip is

Ip = |H(z) ·φ |2. (3)

A differentiable PyTorch implementation of this model is readily
available in the odak library [3] . Using this library and work by
Kavaklı et al. [26], it is also possible to optimise this H operator in a
camera-in-the-loop fashion to produce the best possible output on
an actual holographic display. In our pipeline, we use an H operator
optimised in this way to best suit our display hardware.

3.2 Perception model
Our perceptual model maps images to a perceptual space as outlined
above. This mapping forms the core of our metameric loss, which
is computed by measuring the distance between two images after
transforming both to this perceptual space. In this work, we strive
to make our model efficient (following [53]) and also differentiable,
allowing it to be used effectively for any optimisation or machine
learning task requiring foveated output.

Our perceptual model is inspired by the analysis step of [53],
with some alterations to make it more suitable for backpropagation
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Figure 3: Overview of our system comprised of a display model (left) and a perception model (right). This scheme shows a specific fixation g and
hence a specific propagation H(z) for a specific focus z out of many possible changes over time as we gaze and focus.

(see supplementary material for further details). When process-
ing colour images, as in [53] these are first converted to a YCbCr
colourspace [39]. We then compute the (real-valued) steerable pyra-
mid [38] of an input image. From each level, i of this pyramid,
local statistics si are then computed. These si consist of means and
variances computed over local pooling regions around each pixel
which grow with eccentricity. We first describe how these local
statistics are computed, then describe how the size of the pooling
regions is determined.

Local means of an image can be found by convolving the image
with a normalised low-pass filter F . To determine local variances,
we use the identity:

V[X ] = E[X2]−E[X ]2 (4)

Thus, we identify the local variances by applying another lowpass
filter F , squaring and subtracting: V[I] = F ∗ (I2)− (F ∗ (I))2.

The bandwidth of the lowpass filter decreases with increasing
eccentricity. We set the angular pooling size to be proportional to
the square of the eccentricity, as we found this gave the best results
with the method of [53]. The constant of proportionality α is the
parameter of the approach that controls the foveation effect’s aggres-
siveness. In practice, to accelerate this spatially-varying lowpass
filter, as in [53], we compute a MIP map of the input image that we
sample using trilinear interpolation to achieve the correct pooling
size at each pixel.

At each pixel, we determine the Level of Detail (LoD) value to
use in this sampling so the pooling region covers the appropriate
angular size. Full details of this specific process are provided in the
supplementary material.

Since pooling size is proportional to eccentricity squared, some
pixels near the fixation point will have pooling sizes less than or
equal to one pixel. For these pixels, rather than measuring loss over
all pyramid levels we calculate a direct L2 loss against the target
image. In principle this does not change the loss function, but in
practice we found it helped the most critical part of the image near
the fovea to converge to a noise-free result more quickly.

Our loss function is differentiable and accelerated through a GPU
implementation using a modern machine learning library with au-
tomatic differentiation [36]. It is straightforward to use it directly
in any desired optimisation/training (a PyTorch implementation is
available at [3]).

4 IMPLEMENTATION

The implementation of our proposal contains two building blocks.
These are the actual hologram optimisation pipeline and a proof-of-
concept holographic display prototype. We provide details of each
in the next sections.

4.1 Hologram optimisation pipeline
We implement a differentiable metameric varifocal hologram op-
timisation pipeline using a modern machine learning library with
automatic differentiation [36]. Source code of our implementation
is publicly available at [54] .

Target Image Capture/Generation: We use both real captured
images and virtual rendered images as target images for our optimi-
sation. In both cases, we intentionally limit the Depth of Field (DoF)
of the images to mimic the optics of the human eye. We note that
images formed on the retina already contain DoF blur due to the
optics of the eye. Metamerisation relies upon the processing in the
HVS that takes place right after the optics of the eye. We mimic
this approach by applying a metameric loss to a target with limited
DoF, to replicate the physical process more accurately. If the target
images were sharp everywhere, our output reconstructions would be
sharp in regions of the image which would have DoF blur if the real
scene were viewed by the user, giving unrealistic output.

When capturing real images, we adjust the depth of field of our
camera by opening the aperture to the degree that best approximates
the DoF we observed when viewing the real scene (ƒ-number 2
to 8). Virtual scenes were rendered using the Cycles raytracer in
Blender [12], where we can render realistic scenes with Global
Illumination (GI), and also simulating DoF blur (rendering scripts
are available at [54]).� �

1 def holographic_metamer(It, g, z, opt, steps):
2 tp = percept(It,g) # See Listing 3
3

4 φ = define_initial_phase(type=’random’)

5 φ.requires_grad = True

6

7 for i in range(steps):

8 optimiser.zero_grad()

9 for λ in range(λr,λg,λb):

10 Ip = propagate(φ ,λ ,z) # See Listing 2
11 pp = percept(Ip,g) # See Listing 3
12 loss = l1(pp-tp)

13 loss.backward()

14 optimiser.step()

15

16 return φ� �
Listing 1: Metameric varifocal phase-only hologram optimisation.

Main loop: Our implementation (Listing 1) follows the design of
recent hologram optimisation methods [9, 11, 58]. The variable
to optimise is a three-channel grid of phase values φ , initialised
randomly. In an optimisation loop, the holographic image formation
is simulated using propagate(), followed by a mapping into a
perceptual space percept() (we will discus implementation of
both below). Comparing this percept to the reference percept results
in a scalar loss that is back-propagated to the phase values φ .

All our results were produced using Stochastic Gradient Descent
with ADAM [28] as the optimiser on a computer with Intel© i9
CPU and NVIDIA© RTX 2080 Ti with 200 steps. Note that our
pipeline can run both on CPU and GPU. In our case, optimizing a
hologram for all colour channels takes 90 seconds in total. Often,
multiple holograms of a similar scene are desired. In this case, the
initialisation of the next rounds of hologram optimisation with a
previously calculated hologram can generally decrease this time
down to 4 seconds with only five iterations. The number of itera-



tions required will be somewhat higher if the viewpoint, focus or
gaze location change drastically between frames. Initializing with
the previous hologram in this way also improves temporal consis-
tency between holograms, avoiding the flicker that can result from
changing between very different metamers at each frame.
Display model: We model the propagation of light from the SLM
to the human eye as Fresnel diffraction [7], which is typically ap-
proximated as a convolution with a non-compact and dense kernel,
best implemented using a Fourier transform. The kernel changes
depending on the distance z and the wavelength λ . Hence both are
taken into account by fresnel kernel.� �

1 def propagate(φ ,λ ,z):
2 for λ in λr,λg,λb:

3 u0 = generate_complex_field(1.,φλ )

4 H = fresnel_kernel(z, λ )

5 Ip,λ = ifft(H
∗ fft(u0))

6 return norm(Ip, axis = -1)
∗ ∗ 2� �

Listing 2: Propagation from RGB phase to perceived RGB images.

Perception model: Our key contribution is a practical, efficient and
differentiable mapping, percept(), from an image to a perceptual
space that accounts for peripheral perception and is suitable for holo-
gram optimisation (Listing 3). This method is called twice, once
on the target and in each iteration on the image simulated from the
current phase state. Internally, it uses a function pool for comput-
ing local means and variances over regions of varying size using
convolution. This function relies on two components which we
briefly describe here. Firstly make steerable pyramid() recur-
sively and in constant time computes a steerable pyramid following
the method described in [45], in our case with two orientations (ver-
tical and horizontal) using 5×5 kernels. Secondly, make lod map()
computes a map, that for every pixel holds the level at which a MIP
map needs to be read to achieve the correct pooling region size for
a specific eccentricity. The full details of computing this map are
given in the supplemental material.� �

1 def pool(image,gaze):

2 lod_map = make_lod_map(image, gaze)

3 mipmap = make_mipmap(image)

4 return trilinear_sample(mipmap, lod_map)

5

6 def percept(I,g):
7 p = make_steerable_pyramid(I)
8 for b in p:

9 m = pool(b, g)
10 s = sqrt(pool(b ∗ b, g) - m ∗ m)
11 features.append(m)

12 features.append(s)

13 return features� �
Listing 3: Mapping an image and a gaze to a perceptual space.

4.2 Holographic display prototype

Having established the theoretical basis of our hologram optimi-
sation pipeline and how to simulate outcomes from this pipeline,
we tested using a physical holographic display. At the time of this
manuscript, there was no commodity holographic display that we
could purchase off-the-shelf. Therefore, we constructed a single
colour phase-only holographic display on an optical bench (see
Fig. 4).

For this purpose, we use a fibre-coupled laser diode (OSI Laser
Diode, Inc - TCW RGBS-400R) with an operating wavelength of
520 nm. We collimate and polarise the laser light source with a
Thorlabs LB1945-A bi-convex lens with a 200 mm focal length and
Thorlabs LPVISE100-A polariser. The linearly polarised collimated
beam bounces off the beamsplitter, towards our 0.93 degrees tilted

Figure 4: Proof-of-concept holographic display prototype. We use
a green laser as as a light source. We collimate the light from that
green laser, and illuminate a phase-only SLM. The pattern displayed
on the SLM modulates the phase of the light. We observe images
reconstructed at various depths using a focusing lens, an aperture
and a bare image sensor.

phase-only SLM, Holoeye Pluto 2.0 (tilted half order). To avoid
undiffracted light, we add a horizontal grating to the displayed
holograms on our SLM. The horizontally grated hologram, u′0, is

u′0(x,y) =

{
e− j(φ(x,y)+π) if bxc is even
e− jφ(x,y) if bxc is odd

, (5)

where φ , the original phase of u0, is modified. This grating ensures
that the image reconstructions are not visually affected by the un-
diffracted beam (0th order reflections). We capture the reconstructed
images from these modulated beams using a Point Grey GS3-U3-
23S6M-C USB 3.0 camera and a cascade of beam focusing lenses
Thorlabs LA1908-A and LB1056-A. We also added a pinhole aper-
ture, Thorlabs SM1D12, in between the camera and these lenses to
avoid the undiffracted beam interfering with the result. In our sys-
tem, the target image plane for our holograms is about 15cm away
from the optical setup. We note that our current prototype display
is not a complete near-eye display or projection display. However,
it does allow us a way to practically test our method in a safe way,
and to verify that the optical reconstructions appear correct on real
hardware.

The resolution of holographic displays is only affected by the
SLM resolution. Therefore, the image resolution of the holographic
display can be calculated as 8 µm as lateral and 1 mm as axial spot
sizes that are defined by Abbe’s law [35].

The full realization of a complete near-eye display would require
appropriate eye-piece optics. A standard eye-piece optic that can be
used for such a system can be a lens with a focal length of 50 mm.
This architecture’s field of view (FOV) can be calculated as 17.5°
horizontal x 9.9° vertical.

5 EVALUATION

In this section, we will compare our method to different alternatives
in terms of fidelity (Sec. 5.1) and demonstrate results on our display
prototype (Sec. 5.2).

5.1 Comparison
We compare different methods qualitatively, using the same iteration
count on a set of natural images.

Methods: We study four methods that differ only in their loss.
The first is the pixel-value L2 loss in RGB. The second and third are
naı̈ve baseline foveated losses inspired by [49], which account only
for the acuity of the visual system in the periphery. We study two
variants. The first loss Bm convolves the target T according to the



Figure 5: Comparison of different methods in a simulated environment. Bottom-left compares the output using metameric loss and MSE loss to
the reference, and gives overall MSE losses for this part of the fovea. Right: output of each method in the fovea and periphery in the upper left
triangle, and our method (M ) in the lower-right triangle for comparison. The competing methods are: reconstructing images with the correct depth
of field (MSE Loss), reconstructing using MSE against a blurred image (Bm) Blur match, reconstructing using MSE between blurred source and
target (Bl ) Blur lowpass, reconstructing a target metamer image (MSE against metamer).

acuity-dependent blur kernel B and compares this to the reference I
using L2:

Bm := L2(I,B(T )) (6)

The second Bl blurs the result of the optimisation accordingly
and compares this to the target.

Bl := L2(B(I),B(T )) (7)

We note that although the definitions of these two losses are very
similar, they behave in very different ways. The Bm loss enforces
the image I to exactly match a blurred target B(T ) and have no high
frequency content in the periphery. In contrast Bl only enforces the
low frequency content of I in the periphery to match B(T ), and does
not constrain the higher frequencies of I away from the fovea.

The fourth method, ML2, is L2 loss against a metamer gener-
ated using the method of [53]. We note this is not the same as
metameric loss. Our metameric loss only constrains the output to
be any metamer of the target. This loss constrains the output to be
identical to one particular metamer of the target.

The final method is our metameric loss M (see eqn. 2).
Data: We study results on our dataset, which consists of both

natural images and rendered virtual scenes. This was produced as
outlined in Sec. 4.

Metric: As there is no reliable metric to capture the perceptual
effects of focus and fixation, the evaluation has to rely on qualitative
examples. To judge the quality, we show insets from the fovea as
well as insets from the periphery. All comparisons are made after
the same number of gradient descent steps (200). We note that the
foveated results from the metameric and blur losses are intended
to be viewed whilst fixated on the intended gaze location. As such,
whilst the foveal insets can be compared directly to the reference to
assess quality, the peripheral insets should be compared by fixating
at a different location and keeping them in the periphery of one’s
vision.

Results: Results of all five methods on a natural scene are shown
in Fig. 5.

The standard L2 loss distributes error uniformly across the im-
age. This approach would likely be the best if the user’s gaze were
not known. However, if gaze information is available, it does not

prioritise the fovea in any way, meaning visible artefacts will still
be uniformly distributed and presented there in the case of an actual
holographic display. In this case, the fovea is noticeably blurry and
some noise can be seen.

Bm produces images with a similar quality in the fovea, although
the periphery is naturally very blurry. As noted in [53] this is ac-
ceptable for low levels of blur. However, as blur increases, the lack
of high frequencies becomes increasingly noticeable, even when
fixating in the correct location. As with L2 it does not prioritise the
fovea.

The Bl also has similar quality to L2 in the fovea. However, this
loss does not restrict the higher frequency content in the periphery.
As a result, the appearance of the periphery can vary greatly depend-
ing on the optimisation task. This application produced disturbing
grid-like noise that we found to be visible even when in the periphery
of vision.

The ML2 loss approximated a metamer of the target image. How-
ever, it in no way prioritises the foveal region. Consequently, the
result will not necessarily appear superior to standard L2 loss against
the original target image, even when fixating in the correct location.
In fact in this case the fovea appears noticeably worse than the pre-
vious approaches, possibly because the metamer generated using
the approach of [53] is harder to approximate with a holographic
reconstruction than the original target image.

The metameric loss M , like Bl does not enforce pixel-level
accuracy to the target image. Unlike Bl however, it requires that the
orientation statistics in the periphery match the target. This extra
constraint results in a periphery that appears similar to the metamers
of [53]. The metameric loss tolerates some degree of noise, ringing
or other artefacts in the periphery, making it more flexible than L2
whilst still forcing the output to be close to the target perceptually.
In this case, the extra flexibility and the fact the loss prioritises the
fovea have allowed it to produce a sharper result with fewer artefacts
in the fovea, and perceptually correct content elsewhere.

5.2 Prototype results

Now that we have established our metameric loss (not MSE against
a metamer) and hologram optimisation methods, we assess the out-
come of our entire pipeline in an actual holographic display.



Figure 6: Metameric varifocal holographic reconstructions for holographic displays. The first column provides ground truth images that are going to
be metamerised. The second column shows simulated image reconstructions of optimised holograms derived using our metameric varifocal
hologram optimisation pipeline. The last column shows captured photographs of image reconstructions of our holograms when displayed in our
proof-of-concept display prototype. For all columns, insets that shows zoomed-in versions of foveal and peripheral regions are also provided.

A temporal averaging approach is commonly used in holographic
displays to avoid speckle noise and improve the results’ perceived
quality when showing static images [13]. Rather than displaying a
single, static hologram to a user, holograms optimised with slightly
modified target images are rapidly displayed in sequence. These
images have different realisations of the high-frequency noise and,
if displayed at a rate above the user’s Critical Flicker Fusion (CFF)
threshold, will be “averaged” by the HVS.

There is one issue to address when using this averaging approach
with the metameric loss. We note that in general, the mean of two
distinct metamers to an image is not a metamer. Taking the mean
of multiple, very different metamers to an image tends to produce
a blurry result in the periphery. For this reason, we need to ensure
that we use the same metamer for a particular target image in our
temporal averaging approach, just adding different frequencies of
high-frequency holographic noise in each case. We achieve this by
initializing with a noise phase image to create the first hologram,
and for the subsequent holograms we initialise with the previous
optimised phase, optimising for just 5 iterations with a lower learning
rate. This has the added benefit of reducing the number of iterations
needed to generate the subsequent holograms.

Fig. 7 shows an example. Here we show a single hologram and

the average of five consecutive holograms with a different noise,
simulating the image perceived by the user. Our current prototype
display operates at 60Hz, meaning that with 5-frame temporal av-
eraging the effective framerate is reduced to 12Hz. Note, however,
that the noise is greatly reduced and the image closer to the ground
truth on the right. One of the goals in CGH is to avoid using multiple
holograms so that holographic displays can use the total frame rate
of an SLM. Our metameric loss improves the precision of a single
hologram, as later shown in Fig. 6, helping towards meeting the
goals of CGH.

We provide sample image reconstructions of our holograms opti-
mised using our metameric varifocal hologram generation pipeline
as in Fig. 6. These samples contain a set of ground truth images
that are targeted to be metamerised. Gaze locations and focal planes
(∼ 0.15m) are also provided for each sample during an optimisation
session. We intentionally choose images varying from synthetic
sparsely populated cases to densely populated natural photographs.
In the figure, the results of our simulated image reconstructions are
provided for the holograms optimised using our pipeline. Finally,
we also provide photographs of image reconstructions from our
proof-of-concept display. Though it is not pixel-perfect, note that
simulated cases and actual photographs very closely resemble each



Figure 7: Simulated Temporal averaging. Rather than using a single
hologram based image reconstruction (images on the left column),
we rely on showing multiple images (center column). This way, we
can generate images that suffer less from noise. Note that we use
five holograms for this temporal averaging example.

other, and the noise patterns at both images are close in terms of spa-
tial distribution. How well the actual photographic results match the
simulation is heavily dependent on the model used in optimisation.
We relied on a state-of-the-art model from the literature to achieve
the best results possible at the present time. As models continue
to improve, our pipeline can take advantage of improvements to
combat noise in CGH in the future.

Focal planes used in our captures varied between 0.14m to 0.16m.
These distances are suitable for virtual reality and augmented reality
applications. For example, in a typical virtual reality display, a
magnifier glass typically of focal length from 35 to 60mm is used
between a flat image modulator and the eye. An image volume in
the order of a few millimetres translates to covering virtual image
distances from very close distances (10cm) to far away (6m and
beyond). Thus, our CGH pipeline can present images at a wide
range of focal distances.

6 DISCUSSION

Both the simulations and the results from our physical prototype
further our understanding of the technical challenges in deriving
a metameric varifocal hologram pipeline. These efforts also lay
the foundation of future holographic displays that are perceptually
guided. Nevertheless, more work remains before we can achieve
fully practical CGH.

Interactive rates: Our current CGH optimisation does not run at
interactive rates, as is typical for most CGH optimisation pipelines.
In the meantime, there has been a push towards taking advantage
of learning approaches in CGH in recent years [10, 37, 44]. While
learning-based acceleration is outside of the scope of our work, our
metameric loss appears eminently suited for learning frameworks.

Metameric loss: Our readers may argue that setting a metamer
or a full resolution image as a target image and optimizing a holo-
gram using MSE loss can lead to a faster optimisation routine. This
method is indeed computationally efficient but, as shown in Sec. 5
above, produces results with similar or worse quality than regular
L2 loss in the fovea. Also, in an actual or simulated holographic
display, perfectly matching target images may be physically im-
possible, and visual imperfections such as noise are very likely to
occur, as can be observed in Fig. 7. Rather than using MSE loss
against a metamer target or a complete resolution target, optimizing
holograms with our metameric loss guarantees metamer solutions
that play well with a given holographic light transport model in a

simulation. This advantage clearly shows in our simulated results;
however, at the time being, the advantages of our method and other
foveation methods for CGH [11] do not always translate to the real
world due to the lack of accurate-enough holographic light transport
and display models in the literature – which is beyond the scope of
our focus of this work. We argue that the importance of metameric
loss will become evident as the holographic light transport models
match physical hardware accurately in the future.

Varifocal visuals: There has been a long-standing debate about
the qualities of a display when it comes to supporting optical depth
cues. A recent survey on displays [29] captures a detailed back-
ground of this debate. The varifocal approach in displays has re-
cently proven to improve visual comfort [25]. Fortunately, the
latency requirements for a varifocal display are not demanding as
the accommodation duration of human eyes has been measured as
between 500 ms and 1 s in various studies [6, 8]. One disadvantage
of varifocal displays is that they cannot handle rare cases where gaze
does not uniquely determine the focal depth. Nevertheless, we argue
that varifocal displays are strong candidates for supporting optical
depth cues in displays.

Gaze-contingent displays: A complete gaze-contingent display
requires eye-gaze tracking systems to be involved in the process of
generating visuals. The accuracy requirements of a gaze-contingent
varifocal display have recently been systematically studied [15].
Unfortunately, our proof-of-concept prototype is not equipped with
eye-gaze tracking hardware [4, 30]. Our work assumes that such
eye-gaze information is readily available. We calculate holograms
with this assumption.

Real-world gaze trackers suffer from varying degrees of inaccu-
racy and latency. Our method could be adapted to better tolerate
these issues, by modifying the foveation and increasing the size of
the foveal region. There is however a trade-off between foveal size
and improvement in image quality over MSE loss.

Though some hurdles remain in our implementation, our work
resembles a reliable blueprint for a practical CGH pipeline that can
deliver perceptually accurate visuals to users.

7 CONCLUSION

The versatility in generating high-resolution and three-dimensional
visuals makes Computer-Generated Holography a powerful tech-
nique suitable for next-generation displays. However, among many
technical issues, achieving three-dimensional visuals with CGH still
poses a significant challenge in real holographic displays. We ar-
gue that gaze-contingent CGH can be key to achieving practical
holographic displays with perceptually accurate three-dimensional
visuals. For this purpose, we build upon state-of-the-art perceptual
graphics. We formulate a new differentiable hologram optimisation
pipeline with a perceptually guided loss function. Rather than re-
constructing imperfect three-dimensional scenes, our CGH method
reconstructs visuals at the user’s focus. It offers improved image
quality at the fovea, while displaying true metamers of target images
in the periphery. Using gaze-contingency, we formulate our phase
optimisation as a two-dimensional problem, removing the need to
match a light field or multiplane image. In this way, our method
paves the way towards a practical display that provides perceptually
accurate three-dimensional visuals more efficiently.
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P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs. Wide
field of view varifocal near-eye display using see-through de-
formable membrane mirrors. IEEE TVCG, 23(4):1322–1331,
2017.

[17] D. B. Elliott, K. Yang, and D. Whitaker. Visual acuity changes
throughout adulthood in normal, healthy eyes: seeing beyond
6/6. Optometry and vision science, 72(3):186–191, 1995.

[18] J. Freeman and E. P. Simoncelli. Metamers of the ventral
stream. Nature neuroscience, 14(9):1195–1201, 2011.

[19] S. Friston, T. Ritschel, and A. Steed. Perceptual rasterization
for head-mounted display image synthesis. ACM Trans Graph,
38(4):1–14, 2019.

[20] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In CVPR, pp. 2414–2423,
2016.

[21] M. Gong, Y. Xuan, L. J. Smart, and L. A. Olzak. The extraction
of natural scene gist in visual crowding. Scientific Reports,
8(1):1–13, 2018.

[22] C.-K. Hsueh and A. A. Sawchuk. Computer-generated double-
phase holograms. Applied optics, 17(24):3874–3883, 1978.

[23] X. Huang and S. Belongie. Arbitrary style transfer in real-time
with adaptive instance normalization. In ICCV, pp. 1501–1510,
2017.

[24] C. Jang, O. Mercier, K. Bang, G. Li, Y. Zhao, and D. Lan-
man. Design and fabrication of freeform holographic optical
elements. ACM Trans Graph, 39(6):1–15, 2020.

[25] P. V. Johnson, J. A. Parnell, J. Kim, C. D. Saunter, G. D. Love,
and M. S. Banks. Dynamic lens and monovision 3d displays to
improve viewer comfort. Optics express, 24(11):11808–11827,
2016.

[26] K. Kavaklı, H. Urey, and K. Akşit. Learned holographic light
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