
LIBXSMM Samples

CP2K Artificial Benchmark

The first code sample given for LIBXSMM was a performance reproducer exercising the same set of kernels usually
generated for CP2K’s SMM library. The code sample attempted to model the way "matrix stacks" are processed in
CP2K, however there are two different code paths in CP2K: (1) the "main" code path used when processing stacks
on the host-side, and (2) a code path targeting offload devices. Beside of the host-sided parallelization via MPI
(and perhaps OpenMP), the secondly mentioned code path relies on an additional level of parallelization (which is
obviously necessary to drive a potentially highly parallel offload device). Also, the additional level of parallelism is not
exactly "nested" in the sense that it participates on sharing the same resources as the host-side. In fact, this "artificial
benchmark" (cp2k code sample) is modeling a code path as utilized in the secondly mentioned case (offload device).

Dispatch (Microbenchmark)

This code sample benchmarks the performance of (1) the dispatch mechanism, and (2) the time needed to JIT-generate
code for the first time. Both mechanisms are relevant when replacing GEMM calls (see Call Wrapper section of the
reference documentation), or in any case of calling LIBXSMM’s native GEMM functionality.

Command Line Interface (CLI)

• Optionally takes the number of dispatches/code-generations (default: 10000).
• Optionally takes the number of threads (default: 1).

Measurements (Benchmark)

• Duration of an empty function call (serves as a reference timing).
• Duration to find an already generated kernel (cached/non-cached).
• Duration to JIT-generate a GEMM kernel.

In case of a multi-threaded benchmark, the timings represent a highly contended request (worst case). For thread-
scaling, it can be observed that read-only accesses (code dispatch) stay roughly with a constant duration whereas
write-accesses (code generation) are serialized and hence the duration scales linearly with the number of threads.

NEK Sample Collection

This directory contains kernels taken from Nek{Box,5000}. They aim to represent most of the matrix-matrix workloads.

Please note that the mxm_std.f source code is protected by an (US) GOVERNMENT LICENSE, and under the
copyright of the University of Chicago.

stpm

Small tensor-product multiple (stpm) replicates the axhelm kernel, which computes the Laplacian with spectral
elements. Usage:
./stpm m n k size1 size

The elements are m-by-n-by-k, mode picks the LIBXSMM interface used, and size scales the number of spectral
elements.

rstr

Restriction operator transforms elements from one size to another. This occurs in multi-grid, the convection operator,
and, when the sizes are the same, the local Schwarz solves. Usage:
./rstr m n k mm nn kk size1 size

The input elements are m-by-n-by-k and the output elements are mm-by-nn-by-kk. When m=mm, n=nn, k=kk, this
half of a Schwarz solve.

Scratch Memory Allocation (Microbenchmark)

This code sample aims to benchmark the performance of the scratch memory allocation. This facility is a viable option
to satisfy the need for temporary memory when using the DNN domain of LIBXSMM (small convolutions). Although
any kind of readable/writable buffer can be bound to a convolution handle, LIBXSMM’s libxsmm_aligned_scratch

features a thread-safe linear allocator mechanism which can help to lower allocation overhead.

https://github.com/hfp/libxsmm/raw/master/documentation/libxsmm_samples.pdf
https://github.com/hfp/libxsmm#call-wrapper
https://libxsmm.readthedocs.io/libxsmm_mm/
https://github.com/hfp/libxsmm/blob/master/samples/nek/mxm_std.f


SMM Sample Collection

This collection of code samples exercises different memory streaming cases when performing the matrix multiplication
Cm x n = alpha · Am x k · Bk x n + beta · Cm x n: (1) streaming the matrices A, B, and C which is usually referred as
batched matrix multiplication, (2) streaming the inputs A and B but accumulating C within cache, (3) streaming
the A and C matrices while B is kept in cache, (4) streaming the B and C matrices while A is kept in cache, and
(4) not streaming any of the operands but repeating the very same multiplication until the requested number of matrix
multiplications has been completed.

Beside of measuring the duration of a test case, the performance is presented in GFLOPS/s. As an alternative
metric, the memory bandwidth is given (the artificial "cached" case omits to present the cache-memory bandwidth).
The "pseudo-performance" given in FLOPS/cycle is an artificial scoring, it not only uses a non-standard formula for
calculating the FLOPS (2 * M * N * K - M * N rather than 2 * M * N * K ) but also relies on pseudo clock cycles:
$ ./ specialized.sh 0
m=32 n=32 k=32 size =87381 memory =2048.0 MB (DP)

Batched (A,B,C)...
pseudo -perf.: 10.7 FLOPS/cycle
performance: 23.9 GFLOPS/s
bandwidth: 11.1 GB/s
duration: 239 ms

Finished

There are two sub collections of samples codes: (1) a collection of C++ code samples showing either BLAS, Compiler-
generated code (inlined code), LIBXSMM/dispatched, LIBXSMM/specialized functions to carry out the multiplication,
and (2) a Fortran sample code showing BLAS versus LIBXSMM including some result validation.

C/C++ Code Samples: Command Line Interface (CLI)

• Takes an optional number (1st arg.) to select the streaming-case (0...8)
• Optionally takes the M, N, and K parameter of the GEMM in this order
• If only M is supplied, the N and K "inherit" the M-value
• Example I (A,B,C): ./specialized.sh 0 16 8 9
• Example II (A,B): ./specialized.sh 6 16

Fortran Code Sample: Command Line Interface (CLI)

• Optionally takes the M, N, and K parameter of the GEMM in this order
• Optional problem size (in MB) of the workload; M/N/K must have been supplied
• Optional total problem size (in MB) implying the number of repeated run
• If only M is supplied, the N and K are "inheriting" the M-value
• Shows the performance of each of the streaming cases
• Example I: ./smm.sh 16 8 9 1024 16384
• Example II: ./smm.sh 16

SPECFEM Sample

This sample contains a dummy example from a spectral-element stiffness kernel taken from SPECFEM3D_GLOBE.

It is based on a 4th-order, spectral-element stiffness kernel for simulations of elastic wave propagation through the
Earth. Matrix sizes used are (25,5), (5,25) and (5,5) determined by different cut-planes through a three dimensional
(5,5,5)-element with a total of 125 GLL points.

Usage Step-by-Step

This example needs the LIBXSMM library to be built with static kernels, using MNK="5 25" (for matrix size (5,25),
(25,5) and (5,5)).

Build LIBXSMM

General Default Compilation

In LIBXSMM root directory, compile the library with:
make MNK="5␣25" ALPHA=1 BETA=0

https://github.com/hfp/libxsmm/blob/master/include/libxsmm_timer.h#L37
https://github.com/geodynamics/specfem3d_globe


Additional Compilation Examples

Compilation using only single precision version and aggressive optimization:
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3

For Sandy Bridge CPUs:
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 AVX=1

For Haswell CPUs:
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 AVX=2

For Knights Corner (KNC) (and thereby creating a Sandy Bridge version):
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 AVX=1 \
OFFLOAD =1 KNC=1

Installing libraries into a sub-directory workstation/:
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 AVX=1 \
OFFLOAD =1 KNC=1 \
PREFIX=workstation/ install -minimal

Build SpecFEM example code

For default CPU host:
cd sample/specfem
make

For Knights Corner (KNC):
cd sample/specfem
make KNC=1

Additionally, adding some specific Fortran compiler flags, for example:
cd sample/specfem
make FCFLAGS="-O3␣-fopenmp" [...]

Note that steps 1 and 2 could be shortened by specifying a "specfem" make target in the LIBXSMM root directory:
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 AVX=1 specfem

For Knights Corner, this would need two steps:
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 AVX=1 OFFLOAD =1 KNC=1
make OPT=3 specfem_mic

Run the Performance Test

For default CPU host:
./ specfem.sh

For Knights Corner (KNC):
./ specfem.sh -mic

Results

Using Intel Compiler suite: icpc 15.0.2, icc 15.0.2, and ifort 15.0.2.



Sandy Bridge - Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

Library compilation by (root directory):
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 AVX=1

Single threaded example run:
cd sample/specfem
make; OMP_NUM_THREADS =1 ./ specfem.sh

Output:
===============================================================
average over 15 repetitions
timing with Deville loops = 0.1269
timing with unrolled loops = 0.1737 / speedup = -36.87 %
timing with LIBXSMM dispatch = 0.1697 / speedup = -33.77 %
timing with LIBXSMM prefetch = 0.1611 / speedup = -26.98 %
timing with LIBXSMM static = 0.1392 / speedup = -9.70 %

===============================================================

Haswell - Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz

Library compilation by (root directory):
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 AVX=2

Single threaded example run:
cd sample/specfem
make; OMP_NUM_THREADS =1 ./ specfem.sh

Output:
===============================================================
average over 15 repetitions
timing with Deville loops = 0.1028
timing with unrolled loops = 0.1385 / speedup = -34.73 %
timing with LIBXSMM dispatch = 0.1408 / speedup = -37.02 %
timing with LIBXSMM prefetch = 0.1327 / speedup = -29.07 %
timing with LIBXSMM static = 0.1151 / speedup = -11.93 %

===============================================================

Multi-threaded example run:
cd sample/specfem
make OPT =3; OMP_NUM_THREADS =24 ./ specfem.sh

Output:
OpenMP information:

number of threads = 24

[...]

===============================================================
average over 15 repetitions
timing with Deville loops = 0.0064
timing with unrolled loops = 0.0349 / speedup = -446.71 %
timing with LIBXSMM dispatch = 0.0082 / speedup = -28.34 %
timing with LIBXSMM prefetch = 0.0076 / speedup = -19.59 %
timing with LIBXSMM static = 0.0068 / speedup = -5.78 %

===============================================================

Knights Corner - Intel Xeon Phi B1PRQ-5110P/5120D

Library compilation by (root directory):
make MNK="5␣25" ALPHA=1 BETA=0 PRECISION =1 OPT=3 OFFLOAD =1 KNC=1



Multi-threaded example run:
cd sample/specfem
make FCFLAGS="-O3␣-fopenmp␣-warn" OPT=3 KNC =1; ./ specfem.sh -mic

Output:
OpenMP information:

number of threads = 236

[...]

===============================================================
average over 15 repetitions
timing with Deville loops = 0.0164
timing with unrolled loops = 0.6982 / speedup = -4162.10 %
timing with LIBXSMM dispatch = 0.0170 / speedup = -3.89 %
timing with LIBXSMM static = 0.0149 / speedup = 9.22 %

===============================================================

Matrix Transpose (TCOPY)

Overview

This code sample aims to benchmark the performance of matrix transposes. The C/C++ and FORTRAN sample
code differ slightly with the C/C++ code sample offering a richer set of command line options as well as build settings
available inside of the translation unit.

The available command line options of the sample code may be reviewed by looking into the source code. Generally,
the idea is to support the following:

transpose [<kind> [<m> [<n> [<ldi> [<ldo>]]]]]
transposef [<m> [<n> [<ldi> [<ldo>]]]]

Above, m and n specify the matrix shape, and ldi the leading dimension of the matrix. The argument ldo allows to
specify an output dimension, which may differ from ldi. The transpose kind shall be either out-of-place (o) or in-place
(i).

Running the C sample code may look like:
$ ./ transpose.sh o 20000
m=20000 n=20000 ldi =20000 ldo =20000 size =3052 MB (double , out -of-place)

bandwidth: 18.8 GB/s
duration: 159 ms

Instead of executing a wrapper script, one may affinitize the multi-threaded execution manually (OpenMP runtime).
In case of an executable built using the Intel Compiler this may look like:
LIBXSMM_VERBOSE =2 KMP_AFFINITY=balanced ,granularity=fine ,1 \
./ transpose o 20000
m=20000 n=20000 ldi =20000 ldo =20000 size =3052 MB (double , out -of-place)

bandwidth: 21.1 GB/s
duration: 141 ms

Registry: 20 MB (gemm=0 mcopy =0 tcopy =1)

In the above case one can see from the verbose output (LIBXSMM_VERBOSE=2) that one kernel (tcopy) served transposing the
entire matrix. To avoid duplicating JIT-kernels under contention (code registry), one may also consider LIBXSMM_TRYLOCK=1,
which is available per API-call as well.

OpenTuner

To tune the tile sizes ("block sizes") internal to LIBXSMM’s transpose routine, the OpenTuner extensible framework
for program autotuning can be used. A tuning script (transpose_opentuner.py) is provided, which accepts a range of
matrix sizes as command line arguments.

transpose_opentuner.py <begin> <end> [nexperiments-per-epoch] [tile-size-m] [tile-size-n]

To start a tuning experiment for a new set of arguments, it is highly recommended to start from scratch. Otherwise the
population of previously generated tuning results is fetched from a database and used to tune an eventually unrelated
range of matrix shapes. To get reliable timings, the total time for all experiments per epoch is minimized (hence a

https://github.com/hfp/libxsmm/blob/master/samples/transpose/transpose.f
https://github.com/hfp/libxsmm/blob/master/samples/transpose/transpose.f
https://github.com/hfp/libxsmm/blob/master/samples/transpose/transpose.c
http://opentuner.org/


different number of experiments per epoch also asks for an own database). Optionally, the initial block size can be
seeded (tile-size-m and tile-size-n).
rm -rf opentuner.db

The script tunes matrices with randomized shape according to the specified range. The leading dimension is chosen
tightly for the experiments. The optimizer not only maximizes the performance but also minimizes the value of M * N
(which also helps to prune duplicated results due to an additional preference).
rm -rf opentuner.db
./ transpose_opentuner.py --no -dups 1 1024 1000

rm -rf opentuner.db
./ transpose_opentuner.py --no -dups 1024 2048 100

rm -rf opentuner.db
./ transpose_opentuner.py --no -dups 2048 3072 20

rm -rf opentuner.db
./ transpose_opentuner.py --no -dups 3072 4096 20

rm -rf opentuner.db
./ transpose_opentuner.py --no -dups 4096 5120 16

rm -rf opentuner.db
./ transpose_opentuner.py --no -dups 5120 6144 12

rm -rf opentuner.db
./ transpose_opentuner.py --no -dups 6144 7168 8

rm -rf opentuner.db
./ transpose_opentuner.py --no -dups 7168 8192 6

The tuning script uses the environment variables LIBXSMM_TRANS_M and LIBXSMM_TRANS_N, which are internal to LIBXSMM.
These variables are used to request a specific tiling-scheme inside of LIBXSMM’s libxsmm_otrans_omp routine.

Wrapped DGEMM

This code sample is calling DGEMM and there is no dependency on the LIBXSMM API as it only relies on
LAPACK/BLAS interface. Two variants are linked when building the source code: (1) code which is dynamically
linked against LAPACK/BLAS, (2) code which is linked using --wrap=symbol as possible when using a GNU GCC
compatible tool chain. For more information, see the Call Wrapper section of the reference documentation.

The code will execute in three flavors when running dgemm-test.sh: (1) code variant which is dynamically linked against
the originally supplied LAPACK/BLAS library, (2) code variant which is linked using the wrapper mechanism of the
GNU GCC tool chain, and (3) the first code but using the LD_PRELOAD mechanism (available under Linux).

Command Line Interface (CLI)

• Optionally takes the number of repeated DGEMM calls
• Shows the performance of the workload (wall time)

XGEMM: Tiled GEMM Routines

Overview

This sample code calls the libxsmm_?gemm_omp routines provided by the LIBXSMM extension library (libxsmmext). These
routines are meant for big(ger) xGEMM routines, and thereby provide an OpenMP-based parallelization.

The driver program (xgemm.c) currently accepts all typical GEMM arguments (except for the transposition specifier):
m, n, k, lda, ldb, ldc, alpha, and beta. All arguments are optional (or will inherit defaults from previously specified
arguments). Matrix transposition as part of the libxsmm_?gemm_omp routines will become available in an upcoming
release of LIBXSMM. Please also note that unsupported Alpha or Beta values will cause a fall back to the related
BLAS routine. The single-precision matrix multiplications require to change the ITYPE in xgemm.c.
./ xgemm.sh 2000

https://github.com/hfp/libxsmm#call-wrapper


OpenTuner

To tune the tile sizes ("block sizes") internal to LIBXSMM, the OpenTuner extensible framework for program autotuning
can be used. A tuning script (xgemm_opentuner.py) is provided, which optionally accepts a list of grouped parameters as
command line arguments. The syntax of the arguments is per LIBXSMM’s MNK build-option, and expands to "triplets"
specifying the matrix shapes. For instance, four matrix multiplications of square-matrices can be benchmarked and
tuned using the following command.
./ xgemm_opentuner.py 1024 ,1280 ,1536 ,1792

To start a tuning experiment for a new set of arguments, it is highly recommended to start from scratch. Otherwise
the population of previously generated tuning results is fetched from a database and used to tune an unrelated range
of matrix shapes. Optionally, the initial block size can be seeded (tile-size-m, tile-size-n, and tile-size-k).
rm -rf opentuner.db

The script tunes the geometric mean of the performance for each of the requested triplets. However, the optimizer not
only maximizes the performance but also minimizes the value of M * N * K (which also helps to prune duplicated
results due to an additional preference). As a limitation of the current implementation, the multiplication kernels are
not accompanied by copy-kernels (and not accompanied by transpose kernels). This negatively impacts performance
on power-of-two matrix shapes (POT) due to trashing the LLC. However, it has been found, that tuning for POT
shapes likely achieves superior performance when compared to tuning for non-POT shapes of the same range.
rm -rf opentuner.db
./ xgemm_opentuner.py --no -dups 192 ,256 ,320 ,512 ,768

rm -rf opentuner.db
./ xgemm_opentuner.py --no -dups 1024 ,1280 ,1536 ,1792

rm -rf opentuner.db
./ xgemm_opentuner.py --no -dups 2048 ,2304 ,2560 ,2816

rm -rf opentuner.db
./ xgemm_opentuner.py --no -dups 3072 ,3328 ,3584 ,3840

rm -rf opentuner.db
./ xgemm_opentuner.py --no -dups 4096 ,4416 ,4736

rm -rf opentuner.db
./ xgemm_opentuner.py --no -dups 5120 ,5440 ,5760

rm -rf opentuner.db
./ xgemm_opentuner.py --no -dups 6144 ,6464 ,6784

rm -rf opentuner.db
./ xgemm_opentuner.py --no -dups 7168 ,7488 ,7808

Above, the series of matrix multiplications from 192-8K is separately tuned in eight ranges. The tuning script uses the
environment variables LIBXSMM_TGEMM_M, LIBXSMM_TGEMM_N, and LIBXSMM_TGEMM_K which are internal to LIBXSMM. These
variables are used to request a specific tiling-scheme within LIBXSMM’s libxsmm_?gemm_omp routines.

Deep Learning with GxM

Compiling and Building GxM

1. Install Pre-requisite Libraries: Google logging module (glog), gflags, Google’s data interchange format (Protobuf),
OpenCV, LMDB

2. In Makefile.config, set GXM_LIBRARY_PATH variable to the path containing above libraries
3. In Makefile.config, set LIBXSMM_PATH variable to the path containing LIBXSMM library
4. Set/clear other flags in Makefile.config as required (see associated comments in Makefile.config)
5. source setup_env.sh
6. make clean; make

Running GxM

The network topology definitions directory is "model_zoo". Currently, it contains definitions for AlexNet (without
LRN), ResNet-50, Inception v3 along with CIFAR10 and MNIST as simple test definitions. Each topology definition is

http://opentuner.org/


in a .prototxt file. ResNet-50 can run with "dummy data", raw JPEG image data or with LMDB. Filenames indicate
the data source along with the minibatch size. Inception v3 runs only with compressed LMDB data.

The hyperparameter definitions for each topology are also in the corresponding directory under "model_zoo" in a
.prototxt file with the suffix "solver". For a single-node, this file is called solver.prototxt. For multi-node the filename
also contains the global minibatch size (=single node minibatch size x number of nodes); e.g., solver_896.prototxt
contains hyperparameters for MB=56 per node and 16 nodes. The "solver*" file also contains a flag that specifies
whether to start execution from a checkpoint (and thus read load weights from the "./weights" directory) or from
scratch; by default execution starts from scratch.

Optimal parallelization of Convolutional layers in LIBXSMM happens when the number of OpenMP threads =
MiniBatch. Therefore, on Xeon
export OMP_NUM_THREADS=<MiniBatch >
export KMP_AFFINITY=compact ,granularity=fine ,1,0

The command line for a training run is:
./ build/bin/gxm train <topology filename > <hyperparameter filename >

For example:
./ build/bin/gxm train model_zoo/resnet /1 _resnet50_dummy_56.prototxt model_zoo/resnet/solver.prototxt

Image Convolution

This code sample aims to provide a simple piece of code, which takes an image and produces a visual result as well.
For the convolution, LIBXSMM’s DNN-domain is used. This sample code cannot use multiple threads (therefore
OMP=0) or JIT code generation since parallelization and JIT-vectorization in the DNN-domain are per multiple
images and channels respectively. JIT code is vectorized over image channels according to the native vector-width of
the processor hence the sample code falls back to a high-level implementation. The code processes only a single image
which consists of a single channel (eventually multiple times as per nrepeat).

NOTE: Multicore and JIT code can be only leveraged with code changes and input data that consists of multiple
images or channels (a.k.a. "deep neural networks" or "deep learning"). Please note the collection of CNN layer samples,
which achieves both of which.

The executable can run with the following arguments (all arguments are optional):

iconv [<filename-in> [<nrepeat> [<kw> [<kh>] [<filename-out>]]]]

For stable timing (benchmark), the key operation (convolution) may be repeated (nrepeat). Further, kw and kh can
specify the kernel-size of the convolution. The filename-in and filename-out name MHD-files used as input and output
respectively. The filename-in may be a pseudo-file (that does not exist) but specify the image resolution of generated
input (w[xh] where the file wxh.mhd stores the generated image data). To load an image from a familiar format (JPG,
PNG, etc.), please have a look at Meta Image File I/O.

https://github.com/hfp/libxsmm/tree/master/samples/deeplaerning/cnnlayer
https://github.com/hfp/libxsmm/blob/master/documentation/libxsmm_aux.md#meta-image-file-io

	LIBXSMM Samples
	CP2K Artificial Benchmark
	Dispatch (Microbenchmark)
	NEK Sample Collection
	stpm
	rstr

	Scratch Memory Allocation (Microbenchmark)
	SMM Sample Collection
	SPECFEM Sample
	Usage Step-by-Step
	Run the Performance Test
	Results

	Matrix Transpose (TCOPY)
	Overview
	OpenTuner

	Wrapped DGEMM
	XGEMM: Tiled GEMM Routines
	Overview
	OpenTuner

	Deep Learning with GxM
	Compiling and Building GxM
	Running GxM

	Image Convolution


