
EUROGRAPHICS 2019 / P. Alliez and F. Pellacini
(Guest Editors)

Volume 38 (2019), Number 2

Neural BTF Compression and Interpolation

Gilles Rainer1 Wenzel Jakob2 Abhijeet Ghosh3 Tim Weyrich1

1 University College London, UK
2Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

3Imperial College London, UK

Figure 1: BTF renderings of a challenging specular fabric (shantung). At the same compression ratio, our neural BTF approximation is
able to capture subtle surface variations and anisotropy that are lost by principal component analysis-based compression.

Abstract

The Bidirectional Texture Function (BTF) is a data-driven solution to render materials with complex appearance. A typical
capture contains tens of thousands of images of a material sample under varying viewing and lighting conditions. While capable
of faithfully recording complex light interactions in the material, the main drawback is the massive memory requirement, both
for storing and rendering, making effective compression of BTF data a critical component in practical applications. Common
compression schemes used in practice are based on matrix factorization techniques, which preserve the discrete format of
the original dataset. While this approach generalizes well to different materials, rendering with the compressed dataset still
relies on interpolating between the closest samples. Depending on the material and the angular resolution of the BTF, this
can lead to blurring and ghosting artefacts. An alternative approach uses analytic model fitting to approximate the BTF data,
using continuous functions that naturally interpolate well, but whose expressive range is often not wide enough to faithfully
recreate materials with complex non-local lighting effects (subsurface scattering, inter-reflections, shadowing and masking...).
In light of these observations, we propose a neural network-based BTF representation inspired by autoencoders: our encoder
compresses each texel to a small set of latent coefficients, while our decoder additionally takes in a light and view direction
and outputs a single RGB vector at a time. This allows us to continuously query reflectance values in the light and view
hemispheres, eliminating the need for linear interpolation between discrete samples. We train our architecture on fabric BTFs
with a challenging appearance and compare to standard PCA as a baseline. We achieve competitive compression ratios and
high-quality interpolation/extrapolation without blurring or ghosting artifacts.

CCS Concepts
• Computing methodologies → Reflectance modeling; Image-based rendering; Neural networks; Image compression;

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13633

https://diglib.eg.orghttps://www.eg.org



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

1. Introduction

Photorealistic digital reproduction of real-world objects is one of
the main areas of research in computer graphics. The accuracy
and realism of the resulting renderings is generally limited by the
faithfulness of the underlying physical model, in particular with
respect to geometry and light-material interactions. For materials
with complex appearance, particularly textiles, such models tend
to be prohibitively complex and require a detailed description of
the underlying scattering process down to interactions with individ-
ual fabric fibers. Although promising results have been achieved in
specific cases, e.g., using procedural models [LZB17], it remains
difficult to use this approach to reproduce the appearance of exist-
ing material samples.

Another way of rendering realistic material appearance that
sidesteps the complexities of explicit modeling involves image-
based acquisition methods, such as the Bidirectional Texture Func-
tion (BTF) proposed by Dana et al. [DvGNK99]. The BTF consists
of many photographic measurements of a planar sample of a real-
world material, under controlled viewing and lighting directions.
The realism of the captured materials is directly related to the spa-
tial resolution and number of angular measurements, especially for
specular materials that require a dense sampling ratio. Typically,
acquisition produces vast datasets with tens of thousands of tex-
tures requiring terabytes of data. The main challenge of BTF mod-
eling, then, is to devise effective compression strategies that reduce
the storage requirements to a practical amount.

Currently used local or global compression represents each BTF
measurement as an entry in a large matrix or tensor that is com-
pressed by exploiting the resulting low-rank structure, i.e. linear de-
pendencies between different parts of the data. The most commonly
used approach of principal component analysis (PCA)-based com-
pression finds dependencies between spatial locations as a function
of angle but does not exploit coherence in the angular dimensions
themselves. None of these methods is able to consider more com-
plex nonlinear dependencies in the high-dimensional distribution
of BTF values.

This article proposes a new strategy that compresses BTF data
using an asymmetric encoder-decoder network architecture. Sim-
ilar to factorization-based techniques, the high-resolution textures
are transformed into a low-dimensional latent representation that
is decoded during rendering. In contrast to prior work, our method
nonlinearly interpolates the data on the 4D angular domain and is
trained to harness spatio-directional redundancies in the data. The
method produces high-quality models that improve on the fidelity
and compression ratio of previously used linear decompositions.

2. Related Work

The Bidirectional Texture Function introduced by Dana et
al. [DvGNK99] is a 6-dimensional function of position on the ma-
terial and incoming and outgoing light/view direction, commonly
stored as a 4D array of two-dimensional textures. The curse of di-
mensionality makes dense storage of such high-dimensional data
prohibitive, hence data compression is a major research topic in
BTF modeling community [MBK05,FH09]. Another difficulty lies

in the choice of metric to evaluate the performance of a compres-
sion algorithm – although most works use standard, perception-
agnostic losses, the use of more relevant quality measures has been
explored [FCGH08, JWD∗14].

Matrix Factorization. Most early work on compression is based
on linear matrix factorization techniques, applied to the data
in 2D matrix form [KMBK03], to each sampled view direc-
tion separately [SSK03], or using decompositions into Lamber-
tian and a specular component that are then compressed sepa-
rately [KCL18]. Combining factorization with a clustering method
like K-means [MMK03, TZL∗02] applied to the latent representa-
tion enables the use of fewer coefficients per cluster. Other factor-
ization techniques include hierarchical tensor decomposition meth-
ods applied to the high dimensional BTF [WWS∗05, RK09] and
vector quantization methods based on codebooks [KM06, HFM10,
EV14].

In practice, the simplicity of standard PCA has caused it to
remain the most widely used method. For instance, Weinmann
et al. [WGK14] use it to compress their publicly available BTF
datasets. One significant limitation to all factorization-based ap-
proaches is their relatively naïve treatment of coherence in the data,
which makes no assumptions other than the existence of linear de-
pendences. However, reflectance data is considerably more struc-
tured, which is the premise of compression methods based on ana-
lytical models.

Parametric Models. Early work on analytical models in the
context of BTFs used polynomials [MGW01] and Lafortune
lobes [MLH02] to model the directional dependence of each texel.
Other approaches model directional variation based on the mate-
rial’s response to directional filter banks [TZL∗02], as mixtures
of parameteric models [WDR11, SPS13], spherical radial func-
tions [TFLS11], or using a decomposition in terms of measured
BRDF responses from the MERL database [WWHL07]. As a side
effect, parametric methods often provide physically meaningful
and potentially user-editable quantities characterizing the geome-
try (e.g. surface normals), surface albedo, etc. [MG09, LBAD∗06].

Analytical BRDF models are generally not sufficiently expres-
sive to capture the rich variety of local reflectance behavior ob-
served in real-world materials, which leads to significantly higher
residuals compared to factorization-based approaches. For this rea-
son, the residual of the fit is often kept and compressed sepa-
rately [MCT∗05, WDR11]. Parametric methods also make addi-
tional assumptions about the data and the materials: fitting meth-
ods generally require close-to-perfect registration of the BTF data,
parallax correction, as well as a clearly defined opaque material
surface. Some or all of these assumptions may be violated when
acquiring materials that do not do not occupy a clearly defined two-
dimensional surface.

Statistical Methods. An interesting approach presented by Haindl
et al. [HFA04, HF07] models the material appearance as a combi-
nation of a displacement maps with an autoregressive random field.
This yields BTFs with very high compression ratios that can be ex-
panded to any desired resolution. The two main issues with this

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

236



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

approach are the lack of random access to texels and loss of visual
fidelity for non-Lambertial materials.

Neural Networks. Several recent works have started using neu-
ral networks to render and approximate light transport [RWG∗13,
RDL∗15]. Maximov et al. [MRF18] introduced the concept of
“deep appearance maps”, which use a small fully connected net-
work as a material descriptor. Zsolnai-Fehér et al. [ZFWW18] use
a neural network to render previews of materials with static scene
geometry. The inverse problem has also been the focus of recent
works [LDPT17,LSC18,DAD∗18] that take an image as input and
output estimated BRDF (or SVBRDF) parameters.

Autoencoders in particular (see [HS06,GBC16] ), have received
considerable attention as primitives of compression strategies: they
combine the ability to learn the projection basis (like matrix fac-
torization techniques) with the interpolative properties of analyti-
cal models that reconstruct continuous functions. The latter can be
done by appending information to the latent representation, e.g. to
relight scenes from new lighting directions [XSHR18], or to gener-
ate appearance parameters of a facial model based on the viewing
direction [LSSS18]. Chen et al. [CWZ∗18] store light field datasets
as a neural network parametrized on position and direction of the
viewing ray. Another example of reflectance acquisition with neural
networks can be found in [KCW∗18], where an autoencoder is used
to decode multiplexed lighting captures of a material. However
these methods are not specifically tailored to the compression of
material appearance datasets, in which case both the size of latent
representation as well as the network size need to be considered.

We harness two properties of autoencoders to build an effective
BTF material representation: an efficient adaptive latent represen-
tation with high compression ratio in conjunction with straight-
forward interpolation, by making the decoder a continuous function
of lighting and viewing directions.

3. Method

3.1. Input Data

The BTF f (p,λ,ωi,ωo)) is a seven-dimensional function of po-
sition, wavelength, and viewing angles. Partial evaluation of the
BTF at a surface position p and wavelength λ yields a 4D function
fp,λ(ωi,ωo) encoding the directional dependence that is known
as the apparent BRDF (ABRDF). An important difference of
ABRDFs compared to regular BRDF models is that they encode
various non-local effects such as subsurface scattering.

In the discrete setting p = (x,y) ∈ N2 is a pixel coordinate, λ is
a color channel of the measurement device, and the ABRDF turns
into a length-n vector, with one entry for each captured combina-
tion of lighting and viewing angles. We preprocess the data in a way
that is favorable for both PCA and neural compression, by applying
a log transform to project the reflectance values into a perceptually
more meaningful basis, and then whitening the texels by subtract-
ing the mean of the ABRDF and dividing by the standard deviation.

PCA-based compression techniques of BTFs typically arrange
all ABRDFs as columns of a matrix A ∈ Rm×n, where m is the
number of BTF texels. The matrix is subsequently decomposed

Figure 2: Top: Input BTF and PCA approximations using 8, 16,
32, 64, 128 singular values. Bottom: Negative image of difference
magnitude multiplied by 2. Dataset: Carpet05 from [WGK14].

using a singular value decomposition (SVD), which expresses the
data a sum of outer products

A = UΣVT =
k

∑
i=1

σiuivT
i , (1)

where k denotes the rank of the approximation. Real-world appear-
ance data typically exhibits a numerical rank k� n, which is the
foundation of this compression technique. Color is handled using a
simple generalization of this scheme, which we skip here for sim-
plicity. Figure 2 shows a series of approximations with progres-
sively higher rank.

It is instructive to consider the shape of the resulting decomposi-
tion into U and V (the matrix Σ is normally merged into either one
of them): given n viewing-lighting pairs, and m texels, the matrices
U and V will have m×k and k×n entries, respectively. The size of
the compressed dataset is thus related to the product of the rank k
and the number of angular and spatial samples. The U matrix takes
the role of the original photographs and can be rearranged into a
set of images with k channels. The V-matrix acts as a type of “de-
coder”, since it converts the spatially-varying coefficients into a list
of values that describe the directional reflectance behavior.

Compared to optimization-based approaches, the singular value
decomposition can be computed at a moderate cost, but this as-
sumes that all BTF data can fit into main memory. When dealing
with BTFs that have a fine angular discretization (e.g. the datasets
provided by Weinmann et al. [WGK14]), the decoder can become
very large and have a significant effect on the overall storage foot-
print. The resolution of the textures must also be taken into account:
for BTFs with a high spatial resolution, it may be necessary to per-
form the SVD on separate BTF tiles or texel clusters [MMK03],
which implies having to store multiple decoders.

3.2. Neural BTF compression

Our neural BTF compression strategy is inspired by autoencoder
networks [B∗09]. These architectures use an encoder to transform
a d-dimensional input vector into a latent representation of dimen-
sionality k� d. A subsequent decoder network transforms the la-
tent representation back into a d-dimensional output vector that can
be compared to the input value. A simple training loss minimizes
the difference between the input and output pair, and a sequence
of training iterations then attempts to turn the combination of en-
coder and decoder into the identity function or a good approxima-
tion thereof. The original aim of this dimensional “funnel” was not

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

237



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

ABRDF Encoder Decoder

Sort

3
3

N
/3N k

co
nv

ol
ut

io
n

po
ol

in
g 

+ 
ba

tc
h 

no
rm

.

fu
lly

co
nn

ec
te

d

fu
lly

co
nn

ec
te

d

k
2

2

re
lu

fu
lly

co
nn

ec
te

d
re

lu
fu

lly
co

nn
ec

te
d

re
lu

fu
lly

co
nn

ec
te

d

Figure 3: Our neural BTF builds on an asymmetric encoder-decoder architecture. The encoder receives a per-pixel apparent BRDF (ABRDF)
as input, i.e. a set of angular configurations associated with a single spatial location. These measurements are then reordered coherently
(sorted by ascending spherical coordinates of light and view direction) and downsampled by a sequence of convolution layers until a fully
connected layer finally produces a low-dimensional (k = 8) latent representation that is stored on disk. The decoder concatenates this vector
with the view and camera direction projected onto their respective tangent spaces and passes them through a sequence of fully connected
layers with componentwise nonlinearities. The last layer outputs a single RGB color.

to compress data, but rather to force the network to learn the low-
dimensional structure of a training dataset.

In contrast, our aim is to use an encoder to compress the in-
put dataset and only store the latent vectors along with the decoder
that is used to recover an approximation the original dataset; the
encoder is no longer needed after the dataset has been transformed
and can be discarded. Since we train a specific encoder and decoder
for each dataset, our method is related to previous optimization-
based BTF approximation methods.

Neural autoencoders not only subsume the type of dimensional-
ity reduction enabled by PCA [BK88] but considerably exceed it
due to the ability of introducing nonlinearities that can be used to
recognize more complex dependences in the input data.

Many autoencoder networks in the literature are symmetric,
which means that every layer of the decoder is a mirror analogue
of a corresponding layer in the encoder—for instance, convolutions
turn into transpose convolutions, etc. In our case, the input of the
encoder is an ABRDF, in which case a symmetric decoder would
also output an ABRDF. However, this is less than ideal when con-
sidering the usage in an actual rendering system: standard rendering
algorithms will only query the BTF for a single angle pair (ωi,ωo),
which means that almost all entries of the ABRDF would be com-
puted in vain. BTF evaluation may occur millions to billions of time
in a rendering, making such a wasteful approach impractical.

We are therefore interested in a simplified decoder that is small
enough to run at high frequency, and which only evaluates a sin-
gle angle pair that is provided as an additional input along with the
latent ABRDF representation. As a consequence, the decoder be-
comes a regressor of the directional behavior with the added ben-
efit that the renderer is freed from somewhat tedious aspects of
BTF evaluation, such as linear interpolation and extrapolation on
the spherical domain. Figure 3 illustrates our encoder and decoder,
which we now discuss in turn.

Encoder network. Since the encoder is only used during training,
there are no particular constraints on the architecture or its size. We
rely on a sequence of 1D convolution layers with max-pooling and
batch normalization to reduce the input to a sufficiently small size

before transforming it into an 8-dimensional latent representation
using a fully connected layer.

The number of convolutions is related to the directional resolu-
tion of the input dataset: for the Bonn dataset (22801 configura-
tions), we repeat the illustrated downsampling layer sequence four
times (each reducing the amount of data by a factor of 3×). We
also acquired two new BTF datasets using a motorized goniore-
flectometer. These BTFs have approximately twice the spatial res-
olution but only 1508 angular configurations, hence only a single
downsampling layer is used.

Decoder network. Our decoder architecture is shown on the right
side of Figure 3. We express the input light and view directions as
a pair of 2D vectors using stereographic projection and concate-
nate them with the latent representation that is subsequently trans-
formed by four layers with element-wise nonlinearities; the output
of the decoder is a single RGB value. This asymmetry implies that
the encoder must be evaluated n times (once for each angular con-
figuration) to compute the final loss.

Training relies on stochastic gradient descent with a batch size of
5 and a learning rate of 0.05 and 0.1 for our and the Bonn datasets,
respectively. We investigated the influence of the amount of fully
connected layers in the decoder: Figure 4 shows the L2 loss (on the
pre-processed test dataset) for different decoder architectures, all
trained for the same number of iterations (400 epochs) on the newly
captured shantung dataset. The loss decreases with the number
of layers. Beyond 4-5 hidden layers, the improvement in the loss
compared to the increase in size of the decoder is marginal. We

Figure 4: Test loss for identical networks except for the number of
layers in the decoder. Dataset: shantung (from our database).

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

238



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

therefore use a decoder network with 4 hidden layers as a compro-
mise between accuracy and computation time. To facilitate evalua-
tion, we use layers with 106 neurons, which leads to a decoder that
has the same number of coefficients as the V matrix used by PCA
on our datasets. Note that PCA’s decoder is considerably bigger for
the Bonn dataset due to the increased angular density.

We also study the influence of the parameter k. The decoder
can easily reconstruct the shape of an individual texel’s reflectance
function, but generalizing to all surface positions is more chal-
lenging and requires a sufficiently high-dimensional latent repre-
sentation. Figure 5 shows the reconstruction error as the number

Figure 5: Error (on the preprocessed dataset) as a function of la-
tent coefficients, for a PCA decoder matrix and a neural decoder of
the same size. Dataset: shantung (from our database).

of latent dimensions increases, both for PCA and our approach,
applied to our shantung dataset. Our approach performs better
than PCA, achieving approximately twice the compression ratio.
As the number of latent dimensions increases, the difference be-
tween our approach and PCA, when given the same storage bud-
get, decreases. We use k = 8 latent coefficients in the remainder
of this article which, including mean and standard deviation, adds
up to approximately the same number of coefficients per texel as a
simple SVBRDF model.

4. Results and Evaluation

Our evaluation is based on two sources of data: BTFs from one
of our own capture setups (Figure 13) and BTFs from the pub-
licly available datasets of [WGK14]. We specifically chose mate-
rials like shiny fabrics and wool to have a diverse set of materials
with complex appearance functions. Our own datasets use a lower
angular resolution (1508 light/view configurations with irregular
sampling) but a higher spatial resolution (800× 800 texels). The
datasets from Bonn University have a very high angular resolution
(151×151 = 22801 light/view configurations) for a slightly lower
spatial resolution (400× 400 texels). Since the light sources used
for the BTF capture at Bonn are the camera flashes, the sampling
pattern on the light and view hemisphere is approximately identi-
cal. Table 1 provides numerical results for all the datasets shown
in the figures, along with a breakdown of the different components
of both PCA and our method that affect the compression ratio. The
angular sampling of the BTF determines the size of the PCA de-
coder, and the spatial sampling of the BTF affects both PCA and
our method’s latent map size. Table 2 reports reconstruction scores
on a wider range of datasets from the Bonn database [WGK14].

4.1. Compression

We compare the compression performance of our representation to
that of PCA, which is the most commonly used technique used to
represent compressed BTF datasets (e.g. the datasets by Weinmann
et al. [WGK14]). We do not focus on optimizations, such as local
PCA [MMK03]: such approaches are orthogonal and could be ap-
plied to reduce the number of latent coefficients for both PCA and
our autoencoder network.

We perform comparisons on cropped datasets of 256x256 tex-
els for our BTFs, and 100x100 texels for BTFs from Weinmann et
al. [WGK14], training on the L2 loss that is effectively also used
by PCA. A marginal improvement in the reconstruction error could
be obtained by training for a higher number of iterations, but we
choose to stop at 400 epochs (approximately 5 hours on an NVidia
GeForce GTX 980 Ti).

Table 1 shows the results of our method on multiple datasets,
compared to PCA with 8 and 16 coefficients. For our datasets,
which have a low angular resolution (i.e. a small PCA decoder),
the compression ratio our method achieves is the same as for PCA
with 8 coefficients. The improvement in reconstruction error varies
depending on the dataset: The cotton dataset (Figure 6) has a
regular structure and fairly Lambertian reflectance, which makes
it easy to compress with both methods. Comparing the scores on
this dataset is not particularly meaningful, as the residual is mostly
noise present in the original BTF. Both PCA and our approach
faithfully reconstruct the original appearance and efficiently filter
out the color noise, returning a cleaner texture.

For our shantung material however, the appearance is much
harder to encode and compress linearly due to anisotropy and spec-
ular highlights. In this case, our method significantly outperforms
PCA’s compression ratio. The network manages to reconstruct the
high-frequency details, both in the angular and in the spatial do-
main. As shown in Figure 7, the results are arguably even better
than the PCA reconstruction with 32 coefficients (4 times lower
compression ratio), since the network manages to preserve visually
pertinent features.

The datasets from Bonn University have already been pre-
compressed using PCA with 101 coefficients—the worst case, our
comparison on these datasets is favorably biased towards PCA.
Nevertheless, our approach achieves an over tenfold compression

Figure 6: Top row (from left to right): Ground truth, Neu-
ral Network, PCA (8), PCA (16) and PCA(32). View/Light az-
imuth/elevation angles: 0, 90, 182.4, 35.1. Bottom row: Signed L2
error of the reconstructions compared to the ground truth. Dataset:
cotton from our database.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

239



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

shantung
(Ours)

cotton (Ours) carpet05
(Bonn)

carpet07
(Bonn)

fabric04
(Bonn)

leather04
(Bonn)

Input Size 296,485 296,485 684,030 684,030 684,030 684,030
PCA(8) RMS Error 0.0422 0.06357 0.01888 0.01832 0.0189 0.3513
Decoder, Maps & Total Size 36, 542, 578 36, 542, 578 547, 80, 627 547, 80, 627 547, 80, 627 547, 80, 627
Compression Ratio 512.5 512.5 1090 1090 1090 1090
PCA(16) RMS Error 0.0378 0.0554 0.01436 0.01357 0.01448 0.0248
Decoder, Maps & Total Size 72, 1049, 1121 72, 1049, 1121 1094, 160, 1254 1094, 160, 1254 1094, 160, 1254 1094, 160, 1254
Compression Ratio 256 256 545 545 545 545
Ours(8) RMS Error 0.0375 0.0598 0.0133 0.01237 0.0173 0.0272
Decoder, Maps & Total Size 36, 542, 578 36, 542, 578 36, 80, 116 36, 80, 116 36, 80, 116 36, 80, 116
Compression Ratio 512.5 512.5 5897 5897 5897 5897

Table 1: Size of the components to store (in thousands of coefficients), reconstruction error and compression ratio for PCA with 8 coefficients,
PCA with 16 coefficients, and our network with 8 latent coefficients and 4 hidden linear layers of 106 neurons in the decoder.

carpet03 carpet12 fabric02 fabric05 felt05 felt10 leather06 leather11 stone04 stone05 wallpaper06 wallpaper11 wood01 wood06
PCA (1:1090) 0.01102 0.0147 0.0147 0.0265 0.0188 0.0053 0.0219 0.0639 0.4319 0.0103 0.0134 0.01448 0.00673 0.0145
Ours (1:5897) 0.00948 0.0118 0.0117 0.0222 0.016 0.0048 0.0179 0.0433 0.2429 0.0088 0.0118 0.01332 0.00852 0.0131

Table 2: Root Mean Square Reconstruction Error on 2 datasets from each class of the Bonn Material Database for additional comparisons.

Figure 7: Columns from left to right: Ground truth, Neu-
ral Network, PCA (8), PCA (16) and PCA(32). View/Light az-
imuth/elevation angles in the top row: 0, 90, 182.4, 35.1. Bottom
row: 222.5, 77.2, 44.9, 33.4. Dataset: Shantung from our database.

Figure 8: Columns from left to right: Ground truth, Neu-
ral Network, PCA (8), PCA (16) and PCA(32). View/Light az-
imuth/elevation angles in the top row: 0, 90, 180, 45. Bottom row:
270, 30, 0, 90. Dataset: carpet07 from the Bonn Database.

improvement on PCA for datasets like carpet05, carpet07,
depending on how much the appearance of the texels lends itself
to compression. Even in the worst cases, our approach consistently
outperforms PCA on the reconstruction error by a wide margin, at
an over 5-fold increase in compression.

Linear techniques like PCA tend to return the best-fitting mean
solution with low-frequency variations, while the non-linearities al-
low our network to capture the high-frequency variations even at
very high compression ratios. The lower error also translates into

PCA (18 coeffs) [RK09] Our method
RMS Error 0.041 0.033 0.0404
Size (MB) 3.0 3.0 1.2

Table 3: Comparison to [RK09] on the Pulli dataset.

a considerable visible improvement: PCA tends to apply blur both
in the spatial and angular domain, while our network (at the same
number of latent coefficients) seems to efficiently capture details
that matter perceptually and contribute to a visually more faithful
reconstruction (as Figure 7 shows).

For further evaluation, we apply our method on a dataset that was
featured in many previous BTF compression articles – the Pulli
sample from the 2003 Bonn BTF datasets (UBO2003). Table 3
compares the performance of our method (still the same architec-
ture) with the Sparse Tensor Decomposition from [RK09]. For the
data size comparison, we store our latent maps as well as the net-
work decoder layers as 16-bit float OpenEXR images.

4.2. Interpolation

BTF datasets consist of a texture sampled at a discrete set of light-
view combinations. To obtain the appearance of the texture at new
light-view directions, the standard approach entails interpolating
the closest 3 directions based on a Delaunay triangulation of the
measurement locations. Note that interpolation is simultaneously
needed in both the incident and outgoing direction argument. Spe-
cial treatment is furthermore needed when the chosen direction lies
outside of the convex hull of the measured directions, in which case
we interpolate the nearest two directions. When the dataset is com-
pressed with PCA, this type of interpolation remains necessary.

In our approach, this part is considerably simplified: the light and
view directions are both continuous parameters of the decoder net-
work, hence no interpolation must be performed during rendering.
However, we must still verify that the decoder behaves sensibly
when evaluating regions that lie between measurement locations,
or even outside of their convex hull. To do so, we train on subsets
of the original BTFs and use the remaining textures as ground truth
images for evaluation.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

240



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

Figure 9: Ground truth, reconstruction with our method and with PCA, with error images. Angles displayed on the unit disk: view direction
(green), light direction (red), and light directions used for PCA interpolation (blue). Datasets: carpet05 and leather04 from [WGK14].

Ground Truth Texture Comparisons We cross-validate the an-
gular dependence of our network and PCA with linear interpolation
against the ground-truth. The ground truth images were neither in
the network training dataset nor in the matrix decomposed by PCA.
We show a signed error plot, which displays the L2 distance be-
tween the reconstructed pixel and the original value. If the norm of
the original pixel is higher than the reconstructed one, the sign is
positive (red), and in the opposite case the sign is negative (blue).

Figure 9 shows comparisons for 2 datasets from [WGK14]. For
carpet05, we removed 20% of the original dataset. When the
lighting direction is surrounded by nearby samples, PCA interpola-
tion produces good results. When the lighting direction is further
from the zenith however, changes in shadowing become signifi-
cant even for small perturbations to the lighting direction. The blur
induced by the barycentric interpolation becomes noticeable, and
contrast is reduced (first row). Our network preserves these details,
even when extrapolating outside the convex hull of samples (second
row). Linear interpolation reverts to the two closest samples in this
case, which produces an image with a lighting configuration that
significantly differs from the ground truth, while our network does
not encounter such difficulties and produces plausible output. The
carpet05 dataset provides the most favorable setting for interpo-
lation from discrete samples since the material has a strong Lam-
bertian component and a low-frequency spatial variation in height.

The leather04 dataset at the bottom of Figure 9 is more chal-

lenging due to high-frequency normal variations and the specularity
of the surface. This means that the appearance can change drasti-
cally between close light or view directions (rows 3 and 4). Here,
we removed 50% of the original dataset’s samples. In both exam-
ples, our network is able to successfully “hallucinate” appearance
details and achieve a more faithful match to the ground truth.

Figure 10 shows results on the shantung dataset from our
database, from which we removed 20% of the textures. The angular
sampling in the original dataset is already much lower than in the
datasets from [WGK14], which makes it even harder to interpolate
linearly. Furthermore, the material has very specular glints as well
as a strong anisotropic component. Not only does the interpolation
from PCA miss specular highlights, it also changes the overall tone
of the images, making the reconstructed textures unusable for ren-
dering. Our network produces higher-quality results and manages
to capture a reasonable part of the specular highlights while remov-
ing shot noise that was present in the input photographs.

Figures 9 and 10 only display characteristic examples for these
materials, but we also generated interpolated images for many other
configurations that are provided in the supplemental material.

Angular Plots Another way of evaluating the interpolation perfor-
mance is to consider a single texel for a fixed viewing angle (Fig-
ure 11). We plot the dependence on the lighting direction under
stereographic projection onto a disk. For both materials, extrap-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

241



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

Figure 10: Ground truth, reconstruction with our method and with PCA, with respective error images. Angles are displayed on the unit disk:
view direction (green), light direction (red), and light directions used for PCA interpolation (blue). Dataset: shantung (from our database).

Figure 11: Angular plots of ABRDF slices (fixed view, vary-
ing lighting) with different interpolation strategies. From left to
right: Original BTF (barycentric, lumigraph, natural neighbor),
neural network, PCA (barycentric, lumigraph, natural-neighbor).
Dataset: shantung (top), fabric04 (bottom).

olation outside of the convex hull of samples is challenging. We
test different interpolation strategies: barycentric interpolation on
the triangulated set of sample directions, unstructured lumigraph
blending [BBM∗01], and natural neighbor interpolation [Sib81].

For BTFs with a sparse angular sampling like the shantung
BTF, all three interpolation strategies exhibit seams and drawbacks.
Only the network manages to reconstruct a familiar looking re-
flectance profile—the angular plot displays 2 elliptical anisotropic
highlights that are typical of shiny fiber materials such as silk. Al-
though there is no ground truth reference for this comparison, we
find the angular output produced by the network the most plausible.

Rendering Comparisons We use the open source renderer Mit-
suba [Jak10] to create high-resolution renderings of a cloth draped
over a bowl (Figure 12). The cloth model, lighting and view con-
ditions remain the same throughout the renderings. In the left and
right columns, reflectance values are linearly interpolated using the
original BTF values or the PCA reconstruction respectively. In the
middle, we render with our neural network. Both PCA and our

method of compression preserve the essential part of the material
appearance; even to the trained eye, the differences are minimal.

Our PCA and BTF shaders are unoptimized and involve a linear
sweep through the dataset to find the nearest light/view direction,
making speed comparisons unfair towards PCA. Timings on our
datasets: BTF 8.2 min, PCA 8.8 min, NN 11.2 min, LAMBERTIAN

2.1 min. Timings on Bonn datasets: BTF 1.2 hrs, PCA 1.1 hrs, NN
12 min, LAMBERTIAN 2.1 min. We nevertheless interpret this as
indicative that the rendering performance of our neural model is at
least acceptable, but we do not claim superior rendering speeds.

For additional visualisations, we refer to animations in the sup-
plemental material. We render a square textured with a single rep-
etition of the BTF texture, under moving point light illumination
with unstructured lumigraph blending for the BTF and PCA.

5. Conclusions and Future Work

In this paper, we presented a BTF model based on a neural network.
We train the network separately for each new dataset, and store the
latent vectors with the decoder network as a compressed represen-
tation of the original dataset. We achieve competitive compression
ratios due to our method’s ability to exploit nonlinear dependencies
in the dataset, as well as the decoder’s continuous parametrization
on lighting and viewing directions.

Our technique is especially well suited for storage and transmis-
sion of BTFs because of the small memory footprint of the network,
as well as for photorealistic renderings due to the improved inter-
polation. In the future, it would be interesting to experiment with
different error metrics for the network training (SSIM for instance)
as well as different color spaces, which could lead to perceptually
more accurate results. Finally, it may also be possible to perform

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

242



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

Figure 12: Renderings with Mitsuba’s pathtracer (2000x1200 pixels, 128 samples per pixel, 10 processes, uniformly sampled BSDFs,
environment lighting). Left to right: original BTF, our network and PCA. Datasets (top to bottom): leather04, fabric04, cotton.

texture synthesis on the latent maps generated by our encoder net-
work, to generate BTFs with an arbitrarily large spatial resolution.

Acknowledgments

We would like to thank Change of Paradigm Ltd. for supporting
this work, and Reinhard Klein and his team for providing data and
helping with comparisons. We would also like to acknowledge the
EPSRC Early Career Fellowship EP/N006259/1, and the EPSRC
grant EP/K023578/1.

References

[B∗09] BENGIO Y., ET AL.: Learning deep architectures for ai. Founda-
tions and trends R© in Machine Learning 2, 1 (2009), 1–127. 3

[BBM∗01] BUEHLER C., BOSSE M., MCMILLAN L., GORTLER S.,
COHEN M.: Unstructured lumigraph rendering. Proc. SIGGRAPH
(2001), 425–432. 8

[BK88] BOURLARD H., KAMP Y.: Auto-association by multilayer per-
ceptrons and singular value decomposition. Biological Cybernetics 59,
4 (Sep 1988), 291–294. 4

[CWZ∗18] CHEN A., WU M., ZHANG Y., LI N., LU J., GAO S., YU
J.: Deep surface light fields. Proc. ACM Comput. Graph. Interact. Tech.
1, 1 (July 2018), 14:1–14:17. 3

[DAD∗18] DESCHAINTRE V., AITTALA M., DURAND F., DRETTAKIS
G., BOUSSEAU A.: Single-image SVBRDF capture with a rendering-
aware deep network. ACM Trans. on Graphics (Proc. SIGGRAPH) 37,
4 (July 2018), 128:1–128:15. 3

Figure 13: Our custom four-axis gonioreflectometer uses white-
LED illumination and a Canon 5DSR 50-megapixel camera to flex-
ibly sample high-dynamic range BTFs at 75µm texel resolution
(downsampled from up to 37µm pixels for orthographic views).

[DvGNK99] DANA K. J., VAN GINNEKEN B., NAYAR S. K., KOEN-
DERINK J. J.: Reflectance and texture of real-world surfaces. ACM
Trans. on Graphics 18, 1 (Jan. 1999), 1–34. 2

[EV14] EGERT P., VLASTIMIL H.: Parallel BTF compression with
multi-level vector quantization in OpenCL. In Pacific Graphics Short
Papers (2014), Keyser J., Kim Y. J., Wonka P., (Eds.), The Eurographics
Association. 2

[FCGH08] FILIP J., CHANTLER M. J., GREEN P. R., HAINDL M.: A

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

243



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Neural BTF Compression and Interpolation

psychophysically validated metric for bidirectional texture data reduc-
tion. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) (2008), 138:1–
138:11. 2

[FH09] FILIP J., HAINDL M.: Bidirectional texture function modeling:
A state of the art survey. IEEE Tr. Pat. An. & Mach. Intel. (PAMI) 31, 11
(Nov. 2009), 1921–1940. 2

[GBC16] GOODFELLOW I., BENGIO Y., COURVILLE A.: Deep Learn-
ing. MIT Press, 2016. www.deeplearningbook.org. 3

[HF07] HAINDL M., FILIP J.: Extreme compression and modeling of
bidirectional texture function. IEEE Tr. Pat. An. & Mach. Intel. (PAMI)
29, 10 (Oct. 2007), 1859–1865. 2

[HFA04] HAINDL M., FILIP J., ARNOLD M.: BTF image space ut-
most compression and modelling method. In Proceedings of the Pat-
tern Recognition, 17th International Conference on (ICPR’04) Volume 3
- Volume 03 (Washington, DC, USA, 2004), ICPR ’04, IEEE Computer
Society, pp. 194–197. 2

[HFM10] HAVRAN V., FILIP J., MYSZKOWSKI K.: Bidirectional texture
function compression based on multi-level vector quantization. Com-
puter Graphics Forum 29, 1 (2010), 175–190. 2

[HS06] HINTON G., SALAKHUTDINOV R.: Reducing the dimensionality
of data with neural networks. Science (N.Y.) 313 (08 2006), 504–7. 3

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 8

[JWD∗14] JARABO A., WU H., DORSEY J., RUSHMEIER H., GUTIER-
REZ D.: Effects of approximate filtering on the appearance of bidi-
rectional texture functions. IEEE Trans. Visualization and Computer
Graphics 20, 6 (June 2014), 880–892. 2

[KCL18] KIM Y. H., CHOI J., LEE K. H.: An efficient method for
specular-enhanced BTF compression. Computer & Graphics 75 (06
2018), 1–10. 2

[KCW∗18] KANG K., CHEN Z., WANG J., ZHOU K., WU H.: Effi-
cient reflectance capture using an autoencoder. ACM Trans. on Graphics
(Proc. SIGGRAPH) 37, 4 (July 2018), 127:1–127:10. 3

[KM06] KAWAI N., MATSUFUJI K.: Azimuth-rotated vector quantiza-
tion for BTF compression. In ACM SIGGRAPH 2006 Research Posters
(New York, NY, USA, 2006), SIGGRAPH ’06, ACM. 2

[KMBK03] KOUDELKA M. L., MAGDA S., BELHUMEUR P. N.,
KRIEGMAN D. J.: Acquisition, compression, and synthesis of bidirec-
tional texture functions. In In ICCV 03 Workshop on Texture Analysis
and Synthesis (2003). 2

[LBAD∗06] LAWRENCE J., BEN-ARTZI A., DECORO C., MATUSIK
W., PFISTER H., RAMAMOORTHI R., RUSINKIEWICZ S.: Inverse
shade trees for non-parametric material representation and editing. ACM
Trans. on Graphics (Proc. SIGGRAPH) 25, 3 (July 2006), 735–745. 2

[LDPT17] LI X., DONG Y., PEERS P., TONG X.: Modeling surface ap-
pearance from a single photograph using self-augmented convolutional
neural networks. ACM Trans. on Graphics (Proc. SIGGRAPH) 36, 4
(July 2017), 45:1–45:11. 3

[LSC18] LI Z., SUNKAVALLI K., CHANDRAKER M. K.: Materials
for masses: SVBRDF acquisition with a single mobile phone image.
Proc. Eur. Conf. Comp. Vision (ECCV) (2018). 3

[LSSS18] LOMBARDI S., SARAGIH J., SIMON T., SHEIKH Y.: Deep
appearance models for face rendering. ACM Trans. on Graphics
(Proc. SIGGRAPH) 37, 4 (July 2018), 68:1–68:13. 3

[LZB17] LUAN F., ZHAO S., BALA K.: Fiber-level on-the-fly procedural
textiles. Computer Graphics Forum (Proc. EGSR) 36, 4 (July 2017),
123–135. 2

[MBK05] MÜLLER G., BENDELS G. H., KLEIN R.: Rapid synchronous
acquisition of geometry and appearance of cultural heritage artefacts. In
Proceedings of the 6th International Conference on Virtual Reality, Ar-
chaeology and Intelligent Cultural Heritage (Aire-la-Ville, Switzerland,
Switzerland, 2005), VAST’05, Eurographics Association, pp. 13–20. 2

[MCT∗05] MA W.-C., CHAO S.-H., TSENG Y.-T., CHUANG Y.-Y.,
CHANG C.-F., CHEN B.-Y., OUHYOUNG M.: Level-of-detail repre-
sentation of bidirectional texture functions for real-time rendering. In
Proceedings of the 2005 Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2005), I3D ’05, ACM, pp. 187–194. 2

[MG09] MENZEL N., GUTHE M.: g-BRDFs: an intuitive and editable
BTF representation. Computer Graphics Forum (2009). 2

[MGW01] MALZBENDER T., GELB D., WOLTERS H.: Polynomial tex-
ture maps. Proc. SIGGRAPH (2001), 519–528. 2

[MLH02] MCALLISTER D. K., LASTRA A., HEIDRICH W.: Effi-
cient rendering of spatial bi-directional reflectance distribution functions.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware (Aire-la-Ville, Switzerland, Switzerland, 2002),
HWWS ’02, Eurographics Association, pp. 79–88. 2

[MMK03] MÜLLER G., MESETH J., KLEIN R.: Compression and real-
time rendering of measured BTFs using local PCA. In Vision, Modeling
and Visualisation 2003 (Nov. 2003), Ertl T., Girod B., Greiner G., Nie-
mann H., Seidel H.-P., Steinbach E., Westermann R., (Eds.), Akademis-
che Verlagsgesellschaft Aka GmbH, Berlin, pp. 271–280. 2, 3, 5

[MRF18] MAXIMOV M., RITSCHEL T., FRITZ M.: Deep appearance
maps. arXiv:1804.00863 (2018). 3

[RDL∗15] REN P., DONG Y., LIN S., TONG X., GUO B.: Image based
relighting using neural networks. ACM Tr. Graph. (Proc. SIGGRAPH)
34, 4 (July 2015), 111:1–111:12. 3

[RK09] RUITERS R., KLEIN R.: BTF compression via sparse tensor
decomposition. Proc. Eurographics Symposium on Rendering (2009),
1181–1188. 2, 6

[RWG∗13] REN P., WANG J., GONG M., LIN S., TONG X., GUO B.:
Global illumination with radiance regression functions. ACM Trans. on
Graphics (Proc. SIGGRAPH) 32, 4 (July 2013), 130:1–130:12. 3

[Sib81] SIBSON R.: A brief description of natural neighbor interpolation
(chapter 2). V. Barnett, Interpreting Multivariate Data (1981), 21–36. 8

[SPS13] SILVA N., PAULO SANTOS L.: Interactive high fidelity visual-
ization of complex materials on the gpu. Computer & Graphics, Techni-
cal Section 37, 7 (Nov. 2013), 809–819. 2

[SSK03] SATTLER M., SARLETTE R., KLEIN R.: Efficient and realis-
tic visualization of cloth. Proc. Eurographics Workshop on Rendering
(2003), 167–177. 2

[TFLS11] TSAI Y.-T., FANG K.-L., LIN W.-C., SHIH Z.-C.: Model-
ing bidirectional texture functions with multivariate spherical radial ba-
sis functions. IEEE Tr. Pat. An. & Mach. Intel. (PAMI) 33, 7 (July 2011),
1356–1369. 2

[TZL∗02] TONG X., ZHANG J., LIU L., WANG X., GUO B., SHUM
H.-Y.: Synthesis of bidirectional texture functions on arbitrary surfaces.
ACM Trans. on Graphics (Proc. SIGGRAPH) 21, 3 (July 2002), 665–
672. 2

[WDR11] WU H., DORSEY J., RUSHMEIER H.: A sparse parametric
mixture model for BTF compression, editing and rendering. Computer
Graphics Forum (Proc. Eurographics) 30 (2011), 465–473. 2

[WGK14] WEINMANN M., GALL J., KLEIN R.: Material classification
based on training data synthesized using a BTF database. Proc. Eur.
Conf. Comp. Vision (ECCV) (2014), 156–171. 2, 3, 5, 7

[WWHL07] WEISTROFFER R. P., WALCOTT K. R., HUMPHREYS G.,
LAWRENCE J.: Efficient basis decomposition for scattered reflectance
data. Proc. Eurographics Symposium on Rendering (2007), 207–218. 2

[WWS∗05] WANG H., WU Q., SHI L., YU Y., AHUJA N.: Out-of-core
tensor approximation of multi-dimensional matrices of visual data. ACM
Trans. on Graphics (Proc. SIGGRAPH) 24, 3 (July 2005), 527–535. 2

[XSHR18] XU Z., SUNKAVALLI K., HADAP S., RAMAMOORTHI R.:
Deep image-based relighting from optimal sparse samples. ACM Trans.
on Graphics (Proc. SIGGRAPH) 37, 4 (July 2018), 126:1–126:13. 3

[ZFWW18] ZSOLNAI-FEHÉR K., WONKA P., WIMMER M.: Gaussian
material synthesis. ACM Trans. on Graphics (Proc. SIGGRAPH) 37, 4
(July 2018), 76:1–76:14. 3

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

244

www.deeplearningbook.org

